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Abstract 

Artificial neural networks in time series prediction 
generally minimize a symmetric statistical error, such as 
the sum of squared errors, to model least squares predic-
tors. However, applications in business elucidate that real 
forecasting problems contain non-symmetric errors. In 
inventory management the costs arising from over- versus 
underprediction are dissimilar for errors of identical 
magnitude, requiring an ex-post correction of the predic-
tor through safety stocks. To reflect this, an asymmetric 
cost function is developed and employed as the objective 
function for neural network training, deriving superior 
forecasts and a cost efficient stock-level directly from the 
network output. Some experimental results are computed 
using a multilayer perceptron trained with different ob-
jective functions, evaluating the performance in comp-
etition to statistical forecasting methods on a white noise 
time series. 

1. Introduction 

Artificial neural networks (ANN) have found increas-
ing consideration in forecasting theory, leading to suc-
cessful applications in time series and explanatory sales 
forecasting [2,14,16]. In management, forecasts are a pre-
requisite for all decisions based upon planning. Therefore 
the quality of a forecast is evaluated considering its ability 
to enhance the quality of the resulting management deci-
sion. In inventory management, the final evaluation of a 
forecast must be measured by the monetary costs arising 
from setting suboptimal inventory levels based on impre-
cise predictions of future demand [13]. The costs from 
over- and underprediction are typically not quadratic in 
form and frequently non-symmetric [8].  

Based upon modest research in non-quadratic error 
functions in ANN theory [2,11,15] and asymmetric costs 
in prediction theory [1,8,4], a set of asymmetric cost func-
tions was recently proposed as objective functions for 
neural network training [6]. In this paper, we analyse the 
efficiency of a linear asymmetric cost function in inven-
tory management decisions, training a multilayer percep-

tron to find a cost efficient stock-level for a stationary 
white noise time series directly from the data.  

Following a brief introduction to neural network pre-
diction in inventory management, Section 3 assesses sta-
tistical error measures and asymmetric cost functions for 
neural network training. Section 4 gives an experimental 
evaluation of neural networks trained with asymmetric 
cost functions, outperforming expert software-systems for 
time series prediction in Section 4. Conclusions are given 
in Section 5. 

2. Neural network predictions for 
inventory management decisions 

2.1. Forecasting in inventory management 

In management, forecast are generated as a prerequi-
site of business decisions. Through decisions based on 
sub-optimal forecasts, costs arise to the decision maker in 
choosing an inefficient alternative.  

In inventory management, forecasts of future demands 
are generated to select an efficient inventory level, bal-
ancing inventory holding costs for excessive stocks with 
costs of lost sales-revenue through insufficient stock [3]. 
Although the amount of costs will generally increase with 
the numerical magnitude of the forecast errors, the costs 
arising from over- and underprediction are frequently nei-
ther symmetric nor quadratic [8,5].  

A service-level is routinely determined from strategic 
objectives or according to the actual costs arising from the 
decision, e.g. aiming to fulfil 98.5% of customer demand 
to balance this trade-off. Assuming Gaussian distribution, 
setting the inventory level to the optimum predictor will 
only fulfil 50% of all customer demand. Therefore, 
safety-stocks are calculated to reach the service level, us-
ing assumptions of the conditional distribution of the ex 
post forecast errors of the method applied.  

For the decision of an inventory level for a single 
product in a single period of time the classic “newsboy”-
problem is applicable. The decision rule for a service 
level resulting from a given cost of underprediction cu and 
overprediction co reads  
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giving the value for a lookup of k in the probability table 
of the valid distribution. The final stock-level s is calcu-
lated using the forecast and adding a safety stock (SS) of 
k standard deviations of the forecast errors: 

eht kys δ+= +ˆ   . (2) 

Consequently, the precision of the forecasts directly 
determines the safety stocks kept, the inventory level and 
the inventory holding costs. Hence, forecasting methods 
with superior accuracy such as ANN may significantly 
reduce inventory holding costs [3]. 

2.2. Neural networks for time series forecasting 

Forecasting time series with non-recurrent ANNs is 
generally based on modelling the network in analogy to a 
non-linear autoregressive AR(p) model [10,4]. At a point 
in time t, a one-step ahead forecast 1ˆ +ty  is computed us-
ing n observations 11 ,,, +−− nttt yyy K  from n preceding 
points in time t, t-1, t-2, …, t-n+1, with n denoting the 
number of input units of the ANN. This models a time 
series prediction of the form  

( )111 ,...,,ˆ +−−+ = ntttt yyyfy    . (3) 

The architecture of a feed-forward multilayer percep-
tron (MLP) of arbitrary topology together with the result-
ing residuals of invalid forecasts denoted as the absolute 
error (AE) is displayed in Fig. 1.  
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Figure 1.  Neural network application to time series fore-

casting in inventory management, applying a (4-4-1)-MLP, 
using n=4 input units for observations in t, t-1, t-2, t-3, 4 

hidden and 1 output neuron for time period t+1 [16].  

The task of the MLP is to model the underlying gen-
erator of the data during training, so that a valid forecast 
is made when the trained network is subsequently pre-
sented with a new value for the input vector [2]. There-
fore the objective function used for ANN training 
determines the resulting system behaviour and perform-
ance. The objective functions routinely employed in neu-
ral network training differ from the objective function of 
the underlying inventory management decision in slope, 
scale and ratio of asymmetry. Following, alternate objec-
tive functions are discussed to incorporate the original ob-
jective structure in ANN training. 

3. Objective functions for neural network 
training 

Supervised online-training of a MLP is the task of ad-
justing the weights of the links ijw  between units j and 
adjusting their thresholds to minimize the error jδ  be-
tween the actual and a desired system behaviour [11]. 
Gradient descent algorithms traditionally minimize the 
modified sum of squared errors (SSE) as the objective 
function, ever since the popular description of the back-
propagation algorithm by Rumelhart, Hinton and Wil-
liams [12].  

The SSE, as all statistical error measures, produces a 
value of 0 for an optimal forecast and is symmetric about 

0=te , implying symmetric costs of errors in predicting 
future demand for inventory levels. The consistent use of 
the modified SSE in time series forecasting with ANN is 
motivated primarily by analytical simplicity [11] and the 
similarity to statistical regression problems, modelling the 
conditional distribution of the output variables [2] similar 
to most statistical forecasting methods. As neural network 
theory and applications consistently focus on the symmet-
ric SSE-function for training, also modeling least squares 
predictors, the forecasts also need to be adjusted using 
safety stocks to attain a desired service-level. 

Following, we propose an asymmetric cost function 
(ACF), modelling the objective function of the costs aris-
ing in the original decision problem instead of least 
squares predictors. These cost are often not only non-
quadratic, but also non-symmetric in form. The objective 
function in ANN training, determining the size of the er-
ror in the output-layer, may thus be interpreted as the ac-
tual costs arising from an overprediction or an 
underprediction of the current pattern p in training.  

Recently, we introduced a linear ACF to ANN training 
[6], originally developed by Granger for statistical fore-
casts in inventory management problems [9]. The LINLIN 
cost function (LLC) is linear to the left and right of 0. The 
parameters a and b give the slopes of the branches for 
each cost function and measure the costs of error for each 
stock keeping unit (SKU) difference between the forecast 

hty +ˆ  and the actual value hty + . The parameter a corre-



sponds to an overprediction and the resulting stock-
keeping costs, while b relates to the costs of lost sales-
revenue for each underpredicted SKU. The LLC yields:  
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The shape of one asymmetric LLC, as a valid linear 
approximation of a real cost function in our corresponding 
inventory management problem, is displayed in Fig. 2.  

 
Figure 2.  Empirical Asymmetric Cost Function showing 

cost arsing for over- and under-prediction, using a=$0.001 
and b=$1.00 in comparison to the SE. 

For ba ≠  these cost functions are non-symmetric 
about 0 and are hence called asymmetric cost functions. 
The degree of asymmetry is given by the ratio of a to b 
[4]. For 1== ba  the LLC equals the statistical absolute 
error measure AE. The linear form of the ACF represents 
constant marginal costs arising from the business deci-
sion. Our model therefore coincides with the analysis of 
business decisions based on linear marginal costs and 
profits. 

Yang, Chan and King introduce a classification-
scheme for objective functions, introducing dynamic non-
symmetric margins for support vector regression [17]. 
Applied to objective functions in ANN training it allows a 
classification of all symmetric statistical error functions 
and asymmetric cost functions previously developed. Lin-
ear, non-linear and mixed ACFs have been specified [1,4] 
in literature while variable or dynamic objective functions 

have not yet been developed for ANN-training, as shown 
in Table 1. 

Table 1. Objective functions for neural network training 

Symmetry of objective function Variability 
Symmetric Non-symmetric 

Fixed SE, AE, ACE. 
(statistical error functions) 

LINLIN etc.  
(asymmetric cost functions)

Variable  - - 

Asymmetric transformations of the error function alter 
the error surface significantly, resulting in changes of 
slope and creating different local and global minima. 
Therefore, using gradient descent algorithms, different 
solutions are found minimizing cost functions instead of 
symmetric error functions, finding a cost minimum pre-
diction for the inventory management problem. These 
asymmetric cost functions may be applied in ANN train-
ing using a simple generalisation of the error-term of the 
back-propagation rule and its derivatives, amending only 
the error calculation for the weight adaptation in the out-
put layer [6], but applying alternative training methods or 
global search methods to allow network training [11]. 

4. Simulation experiment of neural 
networks in inventory management 

4.1. Experimental time series and objectives 

Following, we conduct an experiment to evaluate the 
ability of a MLP to evolve a set of weights minimizing an 
LLC asymmetric cost function for a random, stationary 
time series. To control additional influences in the fore-
casting experiment we analyse a time series which is 
white noise of the form: 

tt ecy +=    . (5)

A white noise model represents a simple random 
model consisting of an overall level c and a random error 
component te  which is uncorrelated in time [10].  

The time series considered is derived from the popular 
monthly airline passenger data, introduced by Brown [3]. 
In [10], the monthly values from 01/1949 unto 12/1956 
are detrended and deseasonalised using a X-12-ARIMA 
Census II decomposition, extracting only the residuals. 
An analysis of the autocorrelations confirms a stationary 
white noise model of the form c=124900 and no data-
pattern in the residuals et. . Considering the structure of a 
stationary white-noise model, lacking any systematic pat-
tern in the residuals of et, it should prohibit one ANN to 
extract any underlying linear or nonlinear generator of the 
data and thus outperform competing ANNs or linear 
methods, ensuring an unbiased comparison of methods 
regardless of individual model performance. Experiencing 



random fluctuations, the ANN as other methods should 
predict the level c as the optimum predictor without over-
fitting to the training data.  

In order to specify the underlying costs arising from 
the decision process we require a suitable objective func-
tion. We construct the airline decision problem as an in-
ventory model without backordering. An airline carrier 
needs to allocate planes of different sizes to match pas-
senger demand of flights. Overprediction of air flight pas-
sengers leads to inventory holding costs a for the seat 
while underprediction results in costs b through lost sales-
revenue per seat, assuming b>a and disregarding fixed 
costs of the decision. For our experiment, we assume a 
highly asymmetric cost relationship of (a=$0.001; 
b=$1.00). We generate business forecasts based upon or-
dinary least-squares predictors added to the safety buffers 
necessary to achieve the desired service level. Addition-
ally we use asymmetric cost predictors to decide the cost 
efficient amount of passenger seats provided for each 
month, assessing the ex-post performance.  

For forecasting methods using ordinary least squares 
predictors, such as ANN trained on SE or ARIMA-
models, the service level is calculated, using  
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to derive an optimum service level of 99.90% for our in-
ventory problem, therefore requiring k=3.09 standard de-
viations assuming a Gaussian distribution of residuals. 

4.2. Experimental design of the forecasting 
methods 

A sample of n=96 observations is split into three con-
secutive datasets, using 72 observations for the training-, 
12 for the validation- and 12 for the test-set, resulting in 
59, 12 and 12 predictable patterns in each set. All data 
was scaled from a range of 90000 to 110000 to the inter-
val [-1;1].  We consider a fully connected MLP with a to-
pology of 13 input, 12 hidden, 1 output node without 
shortcuts connections to exploit all feasible yearly time-

lags of a monthly series. All units use a summation as an 
input-function, the tangens hyperbolicus (tan h) as a se-
milinear activation-function and the identity function as 
an output-function. Additionally, 1 bias unit models the 
thresholds for all units in the hidden and output layer.  

Two sets of networks were trained. Set ANNSE was 
trained on minimizing the SE, set ANNLLC  was trained 
minimizing an asymmetric cost function with the parame-
ters LLC (a=$0.001;b=$1.00) for (7). Each MLP was ini-
tialised and trained for five times to account for [-0.3;0.3] 
randomised starting weights.  

Training consisted of a maximum of 10000 epochs 
with a validation after every epoch, applying early stop-
ping if the validation error did not decrease for 1000 ep-
ochs. After training, the results for the best network, 
chosen on its performance on the validation set, and the 
average of five networks are computed for all data-sets. 
Only the test-set-data is used to measure generalisation, 
applying a simple hold out method for cross-validation. 

As benchmarks, the Naïve1 method using last periods 
sales as a forecast, and results using the software Forecast 
Pro and Autobox were computed. Each software selects 
and parameterises appropriate models of exponential 
smoothing or ARIMA intervention models based upon 
statistical testing and expert knowledge. All ANNs were 
simulated using NeuralWorks II Professional and distinct 
error function tables to bias the calculated standard error. 

For the predictions by ANNSE and the expert software 
systems the final inventory level was calculated, using  

ehtys δ09.3ˆ += +   . (7)

Resulting in an ex-post correction of the ordinary least 
squares predictor. The ANNLLC was trained to forecast the 
inventory level directly through the ACF. 

4.3. Experimental results on asymmetric costs  

Table 2 displays the results using mean error measures 
computed on each data-set to allow comparison between 
data-sets of  varying  length.  The  results are given in the 

Table 2.  Results on Forecasting Methods and ANNs trained on linear Asymmetric Costs and Squared Error Measures 

Error Measures Service Level Rank on test-set  MSE(e) MLLC(e) Beta MSE LLC 
Naïve 1(random walk) 18.4 10.26 0.82 1.57 1.53 0.320  98.75% 98.78% 99.74% 4 11 
Autobox ARIMA with pulse 1.80 2.95 0.58 0.53 0.58 0.250  99.58% 99.54% 99.80% 2 9 
ForecastProXE ARIMA (0,0,0) 10.03 4.39 0.50 1.02 0.92 0.230  99.19% 99.27% 99.82% 1 8 
ANNSE trained on SE, best network (No.45) 10.80 4.48 0.68 0.96 0.77 0.160  99.23% 99.38% 99.88% 3 7 
ANNSE trained on SE, average of 5 nets 10.91 4.90 0.82 1.07 0.91 0.270  99.14% 99.28% 99.78% 4 10 
Autobox ARIMA  + safety stock k=3 18.5 21.6 18.47 0.05 0.004 0.004  99.96% 100.0% 100.0% 8 3 
Forecast Pro ARIMA + safety stock k=3 123.6 81.7 81.3 0.05 0.009 0.009  99.96% 100.0% 100.0% 11 6 
ANNSE trained on SE, best net + safety st. k=3 39.9 30.3 31.6 0.19 0.01 0.006  99.85%  100.0% 100.0% 9 4 
ANNSE trained on SE, av. 5 net +safety st. k=3 42.0 32.4 33.8 0.18 0.01 0.006  99.86% 100.0% 100.0% 10 4 
ANNLLC  trained on LLC1, best net (No.48) 18.30 9.05 8.47 0.40 0.17 0.003  99.68% 99.86% 100.0% 7 1 
ANNLLC  trained on LLC1, av. of 5 networks 15.23 8.87 6.36 0.45 0.17 0.003  99.65% 99.81% 100.0% 6 1 

 



form (training-set / validation-set / test-set) to allow inter-
pretation. The descriptive performance measure of the β -
service-level gives the amount of suppressed sales per 
dataset in relation to all demand. An asymmetric ex-post 
performance measure is calculated, denoting the ex post 
mean LINLIN costs (MLLC) resulting from a given fore-
cast method. All methods are evaluated on and ranked by 
their performance for the mean SE (MSE) and the MLLC. 

Various results may be drawn from the experiment. As 
expected, the best ANNSE trained on the standard SE 
gives forecasts close to the white noise level c with little 
deviations due to limited overfitting on the residuals, as 
shown in Fig.3. The forecasts given by all ANNs robustly 
centre around c as displayed in the comparative perform-
ance of the average of all 5 networks trained on minimiz-
ing the SE in table 2..  

Residual of Airline Passenger Data vs. Prediction of ANN min! SSE
- Performance measured in Squared Errors
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Figure 3.  ANN trained on minimizing the symmetric SE to 

forecast monthly airline passengers, showing the white 
noise time series of ticket sales, the ANN forecast and the 

ex-post forecast error measured by the SE(e).  

In comparison, the ARIMA-(0,0,0)-model selected by 
the expert system software Forecast Pro predicts the con-
stant c precisely, as shown in figure 4.  

Residual of Airline Passenger Data vs. Prediction of Forecast Pro 
- Performance measured in Squared Errors
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Figure 4.  Forcast Pro prediction of ARIMA (0,0,0)-model, 
the original white noise time series of ticket sales and the 

ex-post forecast error measured by the SE(e).  

The ARIMA intervention model parameterised by the 
software Autobox fitted significant deviations of c as 
pulses to reduce the ex-post forecast error, thereby reduc-
ing the standard deviation of the error in figure 5. 

Residual of Airline Passenger Data vs. Prediction of Autobox 
- Performance measured in Squared Errors
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Figure 5.  Autobox prediction of ARIMA intenvention 

model, the original white noise time series of ticket sales 
and the ex-post forecast error measured by the SE(e).  

However, the ARIMA (0,0,0)-model outperforms all 
other methods including the ANN and the random walk 
model regarding the performance of the SE on the test-set. 

The impact of intervention modelling in comparison to 
standard ARIMA-modelling becomes evident in the pro-
posed inventory levels of the competing models. Al-
though all methods avoid costly stockouts achieving a 
service level of 100.0%, the increased standard deviation 
of the ARIMA forecasting residuals including all pulses 
leads to significantly higher safety stocks and an in-
creased inventory level on the test-set. 

Residual of Airline Passenger Data vs. Autobox Inventory k=3
- Performance measured in Squared Errors
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Figure 6.  Autobox forecast of ARIMA intervention models 
including safety stocks of k=3 standard deviations and the 

ex-post forecast error measured by the SE(e).  

Consequently, the costs arising from the ARIMA in-
ventory levels exceed that of the intervention models, as 
displayed in figures 6 and 7 as well as the error measures 
presented in table 2. 



Residual of Airline Passenger Data vs. Forecast Pro Inventory k=3
- Performance measured in Squared Errors

100

105

110

115

120

125

130

135

140

145

01
 1

94
9

05
 1

94
9

09
 1

94
9

01
 1

95
0

05
 1

95
0

09
 1

95
0

01
 1

95
1

05
 1

95
1

09
 1

95
1

01
 1

95
2

05
 1

95
2

09
 1

95
2

01
 1

95
3

05
 1

95
3

09
 1

95
3

01
 1

95
4

05
 1

95
4

09
 1

95
4

01
 1

95
5

05
 1

95
5

09
 1

95
5

01
 1

95
6

05
 1

95
6

09
 1

95
6 [time]

[1
00

0 
pa

ss
en

ge
rs

]

0

100

200

300

400

500

600

[E
rr

or
]

SE
Airline Passenger Data
Forecast Pro Inventory

 
Figure 7.  Forecast Pro forecast of ARIMA (0,0,0) model 

including safety stocks of k=3 standard deviations and the 
ex-post forecast error measured by the SE(e).  

The best ANNLLC  trained with the asymmetric LINLIN 
cost function LLC, shown in fig. 8, gives an overall supe-
rior forecast regarding the business objective, achieving 
the lowest mean costs on the test-data with 0.003. It ex-
ceeds all inventory methods, and clearly outperforms 
forecasts of ANN trained with the SE criteria and added 
safety stocks, as well as the ARIMA and ARIMA-
intervention models with safety stocks selected by the 
software expert system.  

Residual of Airline Passenger Data vs. Prediction of ANN min! LLC
- Performance measured in Squared Errors
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Figure 8.  ANN trained on minimizing the asymmetric cost 

function LLC1 to forecast monthly airline passengers, 
showing the actual ticket sales, the ANN forecast and the 

ex-post forecast error measured by the SE(e). 

Analysing the behaviour of the forecast based upon the 
asymmetry of the costs function, the neural network 
ANNLLC raises its predictions in comparison to the 
ANNSE trained on squared errors to achieve a cost effi-
cient forecast of the optimum inventory level, accounting 
for higher costs of underpredicition versus overprediction 
and therefore avoiding costly stock-outs. This is also evi-
dent in the lack of stock-outs represented by the increased 
β -service-level of 100.00%. 

Consequently, the neural network no longer predicts 
the expected mean c of the white noise function but in-

stead produces a biased optimum predictor, as intended 
by Grangers original work through ex post correction of 
the original predictor [8]. This may be interpreted as find-
ing a point on the conditional distribution of the optimal 
predictor depending on the standard-deviation.  

For an inventory management problem, the network 
finds a cost efficient inventory level without the separate 
calculation of safety stocks directly from the cost relation-
ship. This reduces the complexity of the overall manage-
ment process of stock control, successfully calculating a 
cost efficient inventory level directly through a forecast-
ing method using only a cost function and the data. 

5. Conclusion 

We have examined symmetric and asymmetric error 
functions as performance measures for neural network 
training. The restriction on using squared error measures 
in neural network training may be motivated by analytical 
simplicity, but it leads to biased results regarding the final 
performance of forecasting methods. Asymmetric cost 
functions can capture the actual decision problem directly 
and allow a robust minimization of relevant costs using 
standard multilayer perceptrons and training methods, 
finding optimum inventory levels. Our approach to train 
neural networks with asymmetric cost functions has a 
number of advantages. Minimizing an asymmetric cost 
function allows the neural network not only to forecast, 
but instead to reach optimal business decisions directly, 
taking the model building process closer towards business 
reality. As demonstrated, considerations of finding opti-
mal service levels in inventory management are incorpo-
rated within the ANN training process, leading directly to 
the forecast of a cost minimum stock level without further 
computations. 

However, the limitations and promises of using asym-
metric cost functions with neural networks require sys-
tematic analysis. Future research may incorporate the 
modelling of dynamic carry-over-, spill-over-, threshold- 
and saturation-effects for exact asymmetric cost functions 
where applicable. In particular, verification on multiple 
time series, other network topologies and architectures is 
required, in order to evaluate current research results. 
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