
 

 

 

  

Prior research in forecasting economic time series with 

artificial Neural Networks (NN) has provided only inconsistent 

evidence on their predictive accuracy. In management science, 

NN were routinely evaluated on a set of well established 

benchmark time series of monthly, quarterly or annual 

frequency. In contrast, NN are accepted as a potent method for 

electrical load using time series that essentially display similar 

archetypical patterns of seasonality, trends, level shifts, outliers 

and calendar effects, but are of higher complexity and 

frequency. While this discrepancy has been attributed to the 

lack of a reliable methodology to determine the model 

parameters, recent research originating from econometrics and 

finance has indicated that high frequency data may pose 

different modelling problems compared to their low frequency 

counterpart and may hence benefit the use of dissimilar 

methods. This analysis aims to identify and contrast the 

challenges in modelling NN for low and high frequency data in 

order to develop a methodology tailored to the properties of the 

dataset. We conduct a set of experiments in three different 

frequency domains of daily, weekly and monthly empirical data 

of the same time series of cash machine withdrawals, using a 

consistent modelling procedure. The comparison against the 

naive model and exponential smoothing family models provides 

evidence that NN are suitable to predict high frequency data. 

Our analysis identifies a set of problems in modelling NN that 

arise in high frequency domain, mainly in specifying the input 

vector. To address these problems a different modelling 

approach is required between the low and high frequency data. 

Identifying these problems provides a starting point for the 

development of a unified methodology to forecast high 

frequency data with NN and facilitate revisions of the NN 

modelling approaches employed for low frequency data in 

management science.  

I. INTRODUCTION 

HERE has been an increased interest in artificial neural 

networks (ANN) research and applications in forecasting 

over the last years [1]. ANN have been successfully applied 

in several forecasting problems [2, 3] demonstrating their 

abilities both in practice [4] and in academic literature [5, 6]. 

In a literature survey conducted by the authors the vast 

majority of business forecasting papers (74 out of 102) make 

use of low frequency data, i.e. weekly, monthly, quarterly, 

annual, etc. However, there is an increasing interest in 

shorter time intervals time series, with examples from 
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domains like electricity forecasting [7-9], traffic predictions 

[10, 11], finance [12-14] and macroeconomics [15]. On the 

business forecasting domain what constitutes low and high 

frequency data is not strictly defined and is relevant to the 

common practice, techniques and computational resources. 

Time series of daily or shorter time intervals are accepted as 

high frequency data [16]. It is argued in literature that high 

frequency data pose a new set of forecasting problems, 

making conventional methods inappropriate [17] and 

demanding new approaches [7]. There are indications that 

ANN can perform well on high frequency data due to the 

properties of the dataset [18, 19] which is supported by 

empirical evidence [4]. The aim of this study is to explore 

what modelling challenges this increase in the data frequency 

causes for ANN. This is done by using a time series from the 

NN5 competition, which is modelled in monthly, weekly and 

daily time granularity. This way it is explored how the 

transition from low to high frequency data affects the 

modelling process and what problems arise. The ANN are 

compared against benchmarks in each frequency domain and 

furthermore a bottom-up accuracy comparison is performed 

to evaluate the effect in accuracy of using higher frequency 

time series.  

 Section II presents the forecasting models that are used in 

this analysis. Section III provides information on the time 

series and the experimental design. Section IV discusses the 

results in each different frequency domain and across, using 

a bottom-up comparison. In section V the identified 

modelling challenges are discussed. Section VI concludes 

this analysis and indicates potential further research. 

II. METHODS 

A. Artificial Neural Networks 

For this analysis a basic multilayer perceptron (MLP) will 

be used, which is the most commonly employed form of 

ANN [1]. The advantage of neural networks is that they can 

flexibly model nonlinear relationships without any prior 

assumptions about the underlying data generation process 

[20]. In univariate forecasting MLP is used as a regression 

model, capable of using as inputs a set of lagged 

observations of the time series to predict its next value [21]. 

Data are presented to the network as a sliding window over 

the time series history. The neural network tries to learn the 

underlying data generation process during training so that 

valid forecasts are made when new input values are provided 

[22]. In this analysis single hidden layer neural networks are 
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used, based on the proof of universal approximation [23]. 

The general function of these networks is given in (1). 
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X = [x0, x1, …, xn] is the vector of the lagged observations 

(inputs) of the time series and w = (β, γ) are the network 

weights. I and H are the number of input and hidden units in 

the network and g(.) is a non-linear transfer function [24]. 

For this analysis the hyperbolic tangent function is used.  

How to select the input vector of a MLP and the number 

of hidden units in the hidden layer remains debatable in 

research [1]. For this analysis four different methodologies to 

select the input vector are used. Neural networks are 

autoregressive model, as it is seen in (1); hence the partial 

autocorrelation function can be used to identify significant 

time lags in a time series. These time lags can be used as the 

input vector in an ANN model. This approach has been used 

in literature with promising results [22, 25]. The standard 

approach to calculating the PACF is the Yule-Walker 

algorithm, which estimates the true PACF by minimising the 

forward regression error in the least squares sense. Research 

suggests that Burg algorithm for calculating the PACF, 

which minimises both the forward and backward error, 

provides more accurate estimation of the autoregressive 

structure of the time series [26]. Both approaches are used in 

this analysis. An expansion of these methods is to use the 

ACF in addition to PACF, as suggested in [22]. An even 

more popular approach in literature is to use a stepwise 

linear regression to identify the significant time lags in a time 

series and use those as the input vector [27-29], which is also 

employed in this analysis. Under this approach a stepwise 

model is fitted to the data and the significant time lags are 

used as inputs to the ANN. To select the correct number of 

hidden units the most widely used approach to find the best 

number is through simulations [1]. A MLP is trained using 

different number of hidden units and the most accurate 

indicates the correct number of hidden units.  

B. Benchmarks 

A comparison with benchmark models is necessary to 

strengthen the validity and the contribution of any analysis in 

forecasting research, which is often overlooked in ANN 

literature [2]. A set of benchmark models is used. The 

simplest is the naive forecasting model, which assumes that 

the forecast will be equal to the last observation. When there 

is seasonal information a seasonal naive model is employed, 

which assumes that the forecast is the same as the last 

seasonal observation [30]. Another well established set of 

models that are proven to be very robust are the exponential 

smoothing family models [31]. This is also used as a 

benchmark. The selection of the appropriate exponential 

smoothing model follows the standard approach, i.e. the 

components of the time series dictate which form of 

exponential smoothing should be used [32].   

III. EXPERIMENTAL DESIGN 

A. Time series 

The time series used in this analysis originates from the 

NN5 competition dataset, which contains ATM money 

withdrawal information. In the full 111 time series 

competition dataset the selected time series is dubbed as 

NN5-035. This time series is daily and starts from the 18
th

 of 

March 1996 and ends at the 22
nd

 of March 1998. To run the 

experiments in lower frequency time series, i.e. weekly and 

monthly, the time series needs to be aggregated. This will be 

done be summing the daily observations in calendar weeks 

and months respectively. Summation is preferred to 

averaging, since the later would smooth the time series. To 

avoid the introduction of artificial outliers the first and last 

incomplete months are trimmed, leaving the time series to 

exactly 23 months or 699 days, just below two full years of 

data. In the trimmed time series there are 14 missing values. 

These are imputed by the average of the neighbouring 

observations. A plot of the time series with the trimmed and 

the missing values is provided in fig. 1. The processed time 

series is then aggregated in a weekly and a monthly time 

series (fig. 2). 

 A visual inspection of fig. 1 and fig.2 does not provide 

any hints of a trend and Phillips-Perron test provides the 

same result for all three time series. To identify any possible 

seasonality several different tools were used, these being 
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Fig. 1.  NN5-035 plot, highlighting the observations that are trimmed and the missing values. 
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Fig. 2.  NN5-035 weekly and monthly aggregated plots 



 

 

 

visual inspection, the ACF/PACF and the periodogram. The 

seasonal plot for the daily time series is provided in fig. 3 

and indicates a strong day of the week seasonal pattern. The 

periodogram provides the same information. 

 Using the ACF/PACF for the daily time series the weekly 

pattern is found, but in addition to that a yearly cycle can be 

identified. If the untrimmed original NN5-035 time series is 

used, which is longer than 2 full years, the annual cycle is 

even more evident. As for the weekly and the yearly time 

series a yearly pattern can be identified through the 

ACF/PACF analysis. Evidently there is a yearly pattern that 

is difficult to model due to the lack of enough data.  

 All three time series have some apparent outliers. 

Examining the daily time series, unordinary consumer 

behaviour can be observed the last 1.5 weeks of each year 

(18 of December until 31 of December). This is associated 

with the effect of the Christmas and the New Year’s Eve.  

These are marked with an integer dummy variable. 

Examining the weekly aggregated time series the last two 

weeks of the year show an aberrant behaviour, which is 

mirrored in the last month for the monthly time series. The 

dummy time series will be used during the training as an 

additional input for the neural network models. Specifically 

for the monthly time series an artificial outlier is introduced 

by the aggregation. February having fewer days is constantly 

below the level of the other months, which is also coded. 

B. Experiment set up  

Most of the experiments parameters originate from the 

NN5 competition. The forecasting horizon is 56 days, 8 

weeks and 2 months for each time relevant time series 

frequency. These are selected like that to facilitate a bottom-

up comparison of the accuracy across different frequencies. 

The error measure used for comparison of the models is the 

symmetric MAPE, as set by the competition. The SMAPE 

calculates the symmetric absolute error in percent between 

the actuals X and the forecast F across all observations t of 

the test set of size n as shown in (2). 
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 The validation and the test set are both 84 days, 12 weeks 

and 3 months for each time series frequency. The model 

selection is performed by selecting the model with the 

minimum error in the validation set. The evaluation of the 

models is done using rolling origin evaluation, being 

superior than the widely used fixed origin evaluation [33]. 

The comparison of the competing neural network models is 

done using the nonparametric Friedman test and the 

Nemenyi test. This combination is suggested in literature as 

adequate to evaluate nonparametric models, like neural 

networks, without the need to relax assumptions of ANOVA 

or similar parametric tests [34]. All tests are performed at 

5% significance level.  

C. Neural Network Models 

All the neural networks used have a similar setup with the 

exception of the input vector and the number of hidden units. 

The neural networks are initialised 40 times, to provide an 

adequate error distribution and enough sample for the 

statistical tests. Gradient descent backpropagation is used for 

the training. The learning rate is set to 0.5 with a cooling 

factor per epoch of 0.01. Momentum is set to 0.4 and the 

networks are trained for 1000 epochs or until an early 

stopping criterion is satisfied. For the early stopping criterion 

the mean squared error is evaluated every epoch, after the 

first hundred epochs. The data are presented to the neural 

networks scaled between [-0.6, 0.6] using random sampling 

without replacement. All neural networks have a single 

output with an identity function. 

The number of hidden units is re-specified for every time 

series. After simulation experiments the ideal number of 

hidden units is found to be 8, 5 and 9 for the daily, weekly 

and monthly time series respectively. The possible options 

that were evaluated are from 1 to 12 hidden units.  

For the input vector four different methods are used to 

model the ANN automatically for each time series. These are 
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Fig.3.  Seasonal diagram for the daily time series indicating a strong 

day of the week pattern 
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Fig. 4.  Seasonal length plotted against the Euclidean distance between seasons. The asterisks signify the local minima. 



 

 

 

PACF calculated by both the Yule-Walker and Burg 

algorithms, the combination of ACF and PACF and stepwise 

linear regression as described in section II.A. A problem that 

arises here is related to how many lags should one evaluate 

to include in the input vector. This has not been explored in 

literature, with the exception of a sole reference for low 

frequency data [35]. The common practice involves trial and 

error approaches or setting an arbitrary number of lags. This 

approach may be feasible for low frequency data, but for 

high frequency it is not, as the options become too many, due 

to the large sample size. A method that derives this 

information from the time series is necessary. A method 

based on the Euclidean distance is proposed. Assuming no 

prior seasonal information the time series is split into 

“seasons” of different length and the Euclidean distance 

between the seasons is calculated. The seasonal length that 

minimises the Euclidean distance essentially gives the 

minimum possible deviation (in squared error terms) of the 

seasons in a seasonal plot, thus providing the best possible 

seasonality. Apparently for each seasonal length that is tested 

an Euclidean distance is calculated and these can be plotted 

showing all the local (global) minima in terms of distance 

(fig. 4). The local minima in this sense are the minimum 

distances found as the seasonality increases. The seasonality 

is additional modelling information that is argued as 

potentially necessary for the input vector [36]. From fig. 4 it 

can be seen that multiples of the weekly seasonality result in 

smaller distances. It is suggested that this can act as a 

guideline how many seasons of data to evaluate to identify 

the input vector. The compromise that must be made is to 

use a local minimum of the Euclidean distance that will leave 

enough data for the training of the ANN.  

These four input vector identification methods are used in 

two different implementations. Firstly, the time series are 

used to identify the input vector without any pre-processing. 

The second implementation is the same with the difference 

that the last “seasonal” lag identified using the Euclidean 

distance is forced in the input vector. The models are named 

after the input vector methodology used and for the second 

implementation variant an “S” suffix is added. For the 

weekly and the monthly time series the regression based 

models cannot identify any significant lags. In these cases a 

neural network is not trained. The neural networks used are 

summarised in table I.  

D. Benchmarks 

For both the weekly and the monthly time series the naive 

and the simple exponential smoothing models are used as 

benchmarks. For the daily time series three naive models are 

used. The first naive uses the last observation, the second 

uses the weekly seasonal lag and the third uses the Euclidean 

distance “seasonal” lag. Two seasonal exponential 

smoothing models are used. The first uses a weekly 

seasonality and the second, like the naive model, the 

Euclidean distance identified “season”.  

IV. RESULTS 

A. Individual time series 

The SMAPE of the best ANNs, according to validation set 

errors, is provided in table II. The same table provides the 

benchmarks errors as well. The daily and the weekly ANN 

models outperform all the benchmarks, but the same is not 

true for the monthly ANN models. Examining table II 

reveals that the addition of the seasonal lag identified 

through the Euclidean distance approach (-S suffix models) 

in the input vector affects positively the accuracy of both the 

ANN and the benchmarks. Furthermore, for the daily time 

series the ACF-Yule and ACF-YuleS models, which have 189 

inputs, do not perform well. One explanation can be that the 

degrees of freedom are so high that the training of the 

network is no longer efficient. The more parsimonious 

models perform much better.  

In table III statistical test that compare the different ANN 

models are provided. The Friedman test can be used to 

identify significant differences within groups of ANN 

models. Once the Friedman test establishes differences, the 

Nemenyi test can be used to identify which models do not 

have significant differences in that group of models. Starting 

from the monthly time series the tests show that no models 

are significantly different and all outperformed by the 

benchmarks. For the weekly time series the Yule, YuleS, 

ACF-Yule and ACF-YuleS perform identical showing that the 

inclusion of the extra input does not offer statistically 

significant improvements, in spite of the improvement 

observed in table II. For the daily time series Regression, 

YuleS and RegressionS are not significantly different, 

showing that the marginal difference between Regression 

TABLE I 

SUMMARY OF NEURAL NETWORKS 

Frequency Daily Weekly Monthly 

Model Input Vector # 
Hidden 

Units 

Input 

Vector 
# 

Hidden 

Units 

Input 

Vector 
# 

Hidden 

Units 

Yule 1,3-9,11,13-16,21,28-29,36,65,108 19 8 1-2 2 5 1 1 9 

Burg 1,3,5-9,11,13-15,20,22,29,36 15 8 1 1 5 1 1 9 

ACF-Yule 1-189 189 8 1-2 2 5 1 1 9 

Regression 1,7,35,56,83-84,99,169,174,182,189 12 8 - - - - - - 

YuleS 1,3-9,11,13-16,21,28-29,36,65,108,189 17 8 1-2,25 3 5 1,7 2 9 

BurgS 1,3,5-9,11,13-15,20,22,29,36,189 6 8 1,25 2 5 1,7 2 9 

ACF-YuleS 1-189 189 8 1-2,25 3 5 1,7 2 9 

RegressionS 1,7,35,56,83-84,99,169,174,182,189 12 8 - - - - - - 

The input vector contains the time lags that are used as inputs. For example 1, 25 means that t-1 and t-25 are used. 



 

 

 

and the benchmarks can be even larger as YuleS shows. 

Interestingly, BurgS outperforms the benchmarks in the test 

set but is significantly worse than the first group of models. 

This indicates that several different setups of ANN 

outperform the benchmarks for the daily time series and that 

for the high frequency time series the –S models are 

significantly better than the other models. Combining the 

information in tables I, II and III one can see that as the data 

frequency increases there is more autoregressive information 

for the models to capture, resulting in better accuracy in 

comparison to the benchmarks. Furthermore, there is 

evidence that the Euclidean distance minimisation approach 

offers improvement in accuracy, especially in the high 

frequency domain.  

B. Bottom-up comparisons 

Using the best neural network for each time series in the 

validation subset (table II) forecasts are created for 84 days, 

8 weeks and 2 months for each time series respectively. The 

daily forecasts can be aggregated to weekly and monthly 

forecasts, using calendar information, to compare the 

accuracy with the weekly and monthly models. Essentially 

bottom-up forecasts in the dimension of time are created. To 

keep the experiment complexity controllable this evaluation 

is a fixed origin evaluation and SMAPE is used. The results 

are provided in table IV. 

For the weekly time series the bottom-up approach does 

not produce better forecasts. The aggregated daily forecasts 

are less accurate than the weekly forecasts, for the weekly 

time series. However when examining the monthly forecasts 

the more detailed (high frequency) forecasts used, the better 

the accuracy of the bottom-up forecasts. This discrepancy is 

caused by the presence of the outliers in the test subset. The 

daily forecasts behave very well only outside the peak of the 

Christmas, where the weekly forecasts model the outlier 

better. This reduced performance in Christmas is evident on 

weekly level, but on monthly level the normal periods are so 

many that dampen the effect of the outlier, showing that high 

detail (frequency) forecasts can be useful. Furthermore, the 

need for a more sophisticated coding of outliers for high 

frequency data is revealed, as it will be discussed in the next 

section. 

V. DISCUSSION 

A. Effect of sample size 

Basic characteristic of the high frequency data is large 

datasets. For this experiment the daily time series is 7 and 30 

times longer than the weekly and the monthly time series. 

This difference in the sample size creates several differences 

in the three frequency domain even though exactly the same 

modelling procedure is followed.  

From table I one can observe that most of the input vector 

identification methodologies used behaved differently for the 

three data frequencies with significant differences between 

the daily time series and the other two. Higher frequency 

data can provide extra detail, which is lost in the lower 

frequencies, that aids in the creation of better forecasts, as 

the bottom-up comparison indicates (table IV). However this 

comes at a price. From the conducted experiments it was 

made apparent that a more sophisticated way to code the 

outliers is needed, since in high frequency data an “outlier” 

can last for several observations. Coding through a binary 

dummy variable is not adequate, since this would essentially 

code a level change and not an abnormal behaviour. Integer 

dummies seem to be unable to model the outlier satisfactory, 

TABLE IV 

BOTTOM-UP COMPARISON SMAPE 

Time Series 
Model used to create forecasts 

Daily Weekly Monthly 

Weekly time series 0.1160 0.0743 - 

Monthly time series 0.0828 0.0858 0.1853 

 

The SMAPE produced by the each model for each time series is 

provided in the above table. For the weekly time series the daily 

model forecasts are aggregated into calendar weeks. For the monthly 

time series the daily and the weekly models forecasts are aggregated 

into the last two calendar months of the test set. 

TABLE II 

TEST SUBSET SMAPE 

Frequency 

Daily Weekly Monthly Model 

A
N

N
 M

o
d

el
s 

Yule 0.3244 0.0717 0.2545 

Burg 0.3882 0.0728 0.2545 

ACF-Yule 1.3439 0.0717 0.2545 

Regression 0.2800 - - 

YuleS 0.2674 0.0515 0.2308 

BurgS 0.2705 0.0843 0.2308 

ACF-YuleS 1.3439 0.0515 0.2308 

RegressionS 0.2800 - - 

Selected 

Model Regression(S) 

Yule/ACF-

Yule 

Yule/Burg/ACF-

Yule 

B
en

ch
m

a
rk

s 

Naive-1 0.6610 0.1415 0.2307 

Naive-7 0.4644 - - 

Naive-189 0.2883 - - 

EXSM-1 - 0.1264 0.1680 

EXSM-7 0.2806 - - 

EXSM-189 0.3313 - - 

SMAPE for all the models. The selected ANN models are those that 

perform best in the validation subset. The numbers following the 

benchmark models indicate the seasonality, i.e. EXSM-1 is a simple 

exponential smoothing and EXSM-7 is a seasonal exponential smoothing 

with a seasonality of 7. 

 

TABLE III 

STATISTICAL TESTS FOR TEST SUBSET 

Frequency Daily Weekly Monthly 

Friedman Test 0.000 0.000 0.106 

Model nemenyi 

Yule Same 

Burg 

ACF-Yule Same 

Regression Same - - 

YuleS Same Same 

BurgS 

ACF-YuleS Same 

RegressionS Same - - 

The different neural network models are tested against each other 

using Friedman test and if significant differences are found then the 

Nemenyi test is employed to explore in more details which models are 

significantly different. Same here means that there are no statistical 

differences. All tests are performed at 5% significance level. 



 

 

 

though their use increases accuracy. This analysis, using a 

consistent modelling across all frequency levels does not 

address the need for a new approach to outlier coding. 

Another aspect of problems associated with the data size is 

how the input vector identification methods behave. All the 

methods used here employ some form of confidence 

intervals. Focusing to ACF-PACF approaches, the tightness 

of the confidence intervals is positively correlated with the 

sample size, as is illustrated in fig. 5.  

Although the sample size effects the calculation of 

ACF/PACF the effect on the confidence intervals is more 

prominent. Using a synthetic time series, to keep the 

information content under control, the PACF is calculated 

for 120 observations and 1200 observations, the later being 

ten times the first sample. The results are provided in figure 

6 and are quite illustrative of the problem, indicating that a 

“high frequency data” correction is necessary, to avoid 

overparameterisation of the models in the input vector.  

One other problem that derives from the resulting large 

input vectors is that the degrees of freedom become so high 

that it is very hard to train (optimise) the neural network. 

This is evident in tables I and II, where the ACF-Yule and 

ACF-YuleS models for the daily time series have as inputs all 

lags from t-1 to t-189 and the optimiser cannot train the 

network efficiently, resulting in the worst model in terms of 

accuracy. In theory the optimiser should be able to assign 

nearly zero weights to the nonessential inputs, which in 

practice does not happen due to the high degrees of freedom. 

B. Computational resources 

High frequency data, due to the large datasets associated 

require a lot of computational resources. In the performed 

experiment the same layout was used to find the number of 

the hidden units for all three frequency domains. The 

difference in the computational time was solely due to the 

frequency of the data. Inspecting table V one can see that the 

daily data require 371.1% more time than the monthly data. 

Large scale simulations will require immense computational 

resources and given the present computational capabilities 

parallel computing seems to be the way forward. This also 

has significant implications for heuristic approaches used to 

identify the input vector and modelling the ANN. As the 

frequency of the data increases the required computational 

resources for simulation studies become very high, 

demanding a smart modelling approach that will make the 

most of the information contained in the time series 

minimising the need to do simulation/run heuristics to find 

the best setup. 

C. Calendar Problems 

Increasing the frequency in business data means that one 

has to take into considerations weeks, days, hours, etc. From 

weeks and on the aggregation of data can be very 

challenging, this is because there is no set number of weeks 

every month/year has. The same is true for days. 

Furthermore, every four years there is a leap year, which 

creates seasonal shifts. Aggregation using calendar 

information is a solution, which is used in these experiments, 

but as far as the data exploration and input vector 

identification/coding is concerned most methods are unable 

to handle the above calendar properties. This needs further 

research so that a standardised solution can be developed 

that will allow statistical tools handle this information. 

D. Necessary amount of information for model building 

The modeller has to decide how many time lags to include 

in the analysis for the input vector. When seasonality is 

present this can be a good guideline. In the case of high 

frequency data it is common to expect multiple seasonalities 

to be present, like here, where a day of the week and a day of 

the year pattern exist. The problem becomes even trickier 

when there is no seasonality. In this analysis an approach 

using the minimum seasonal Euclidean distance was used, 

but further research is necessary to reach a consistent 

mathematical rule to decide how many lags should be 

evaluated. What is clear for high frequency data is that the 

number of lags that need to be evaluated is much higher than 
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Fig.5.  As the sample size increases the confidence interval becomes 

tighter. After a point it is so tight that nearly everything becomes 

significant.  
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Fig.6.  PACF plots of a synthetic time series. The first plot which is 

calculated using only 120 observations has far less significant lags 

than the second which uses 10 times more observations.  

TABLE V 

COMPUTATIONAL TIME IN SECONDS 

Time 

series 

Computational Time 

(seconds) 

% more from 

monthly 

Daily 2181 371.1% 

Weekly 554 19.7% 

Monthly 463 - 

The recorded time corresponds to the identical experiments run for 

each time series to identify the correct number of hidden units. The 

experiments were run in a Intel(R) Core(TM)2 T7500 processor at 

2.2Ghz with 3GB of memory using Windows Vista 32-bit operating 

system. 



 

 

 

for the low frequency data, as it is apparent from the input 

vectors is table I.  

VI. CONCLUSIONS 

The experiments carried out in this analysis aimed at 

revealing the difficulties involved in modelling high 

frequency data with neural networks. Neural networks are 

found to be able to model this kind of data, with promising 

results, suggesting it is worthwhile to pursue further research 

on this specific problem. Furthermore, a set of problems 

associated with the dataset size, the available statistical tools, 

the optimisation routines, outlier identification, 

computational needs and modelling problems associated with 

time aggregation and manipulation were revealed. This 

analysis offers some initial solutions to these problems, but 

its main contributions are that it identified the set of 

problems that need to be addressed before forecasting high 

frequency data with neural networks becomes a routine 

procedure and that it gives more evidence that neural 

networks are a promising approach to high frequency data 

forecasting.  
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