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Abstract. In time series prediction, modelling neural networks poses multiple 

challenges in specifying suitable input vectors, network architectures, and training 

parameters depending on the underlying structure of the time series data. The data 

properties are often determined by the frequency in which the time series is 

measured, such as low frequency data of yearly, quarterly or monthly observations, 

or high frequency data of weekly, daily, hourly or even shorter time intervals. As 

different time frequencies require distinct modelling heuristics, employing neural 

networks to predict a set of time series of unknown domain, which may exhibit 

different characteristics and time frequencies, remains particularly challenging and 

limits the development of fully automated forecasting methodologies for neural 

networks. We propose a methodology that unifies proven statistical modelling 

approaches based upon filters and best practices from previous forecasting 

competitions into one framework, providing automatic forecasting without manual 

intervention by inferring all information from the data itself to model a diverse set 

of time series of varying time frequency, like the ESTSP’08 dataset.  

1 Introduction 

Artificial neural networks (NN) have found increasing consideration in forecasting 

research and practice, leading to successful applications in time series prediction and 

explanatory forecasting [1]. However, despite their theoretical capabilities of non-

parametric, data driven approximation of any linear or nonlinear function directly 

from the dataset, NN have not been able to confirm their potential in forecasting 

competitions against established statistical methods, such as ARIMA or Exponential 

Smoothing [2]. As NN offer many degrees of freedom in the modelling process, from 

the selection of activation functions, adequate network topologies of input, hidden and 

output nodes, to learning algorithms and parameters and data pre-processing in 

interaction with the data, their valid and reliable use is often considered as much an 

art as science. Previous research indicates that the parsimonious identification of input 

variables to forecast an unknown data generating process without domain knowledge 

poses one of the key problems in model specification of NN [3, 4]. While literature 

provides guidance in selecting the number of hidden layers of a NN using wrapper 

approaches [5, 6], selecting the correct contemporaneous or lagged realisation of the 

dependent variable, and / or multiple explanatory variables, remains a challenge [7].  

 

 The issue of input variable and lag selection becomes particularly important, as 

the input vector needs to capture all characteristics of complex time series, including 



the components of deterministic or stochastic trends, cycles and seasonality, 

interacting in a linear or nonlinear model with pulses, level shifts, structural breaks 

and different distributions of noise. While some components may be addressed in a 

univariate model using only lagged realisations of the dependent variable, others may 

require the integration of explanatory dummy-variables with adequate time-delays. 

Although a number of methodologies have been developed to support the valid and 

reliable identification of the input vector for NNs, they do not perform well 

consistently [8], there have been no comparative evaluations between them [4] and 

consequently there is currently no consensus on what methodology should be applied 

under which circumstances and time series frequency. Furthermore, it is argued [9, 

10] that these methodologies to specify the input vector do not apply to high 

frequency data of weekly or higher frequency, like those datasets provided for the 

2008 ESTSP competition. In addition to identifying a methodology to specify the 

input vector for a given time series frequency, this raises a more substantial challenge 

associated with the variety of modelling methodologies: the challenge of developing a 

valid and reliable methodology for a set of time series of different frequency, which 

ultimately prohibits the generation of a fully automated NN forecasting system.  

 

 To address this challenge, this paper suggests a methodology founded on 

established best practices from previous time series forecasting competitions for NN 

and proven statistical methods. The resulting approach can be applied automatically, 

without the need of manual intervention from a human expert, producing forecasts for 

sets of time series of unknown domain and different frequencies. Finally, through the 

necessary research that led to the development of this modelling methodology, a set 

of problems associated with modelling NN on high frequency data were encountered 

and explored. These are discussed in contrast to the challenges of modelling on low 

frequency time series, revealing the increasing complexity of high frequency data and 

pointing to potential for future research. The paper is organized as follows. First, we 

briefly introduce NN in the context of time series forecasting. Methodologies for 

selecting the input vector and the number of hidden nodes are also discussed. Section 

3 presents the experimental design and the results obtained. A discussion of the 

problem arising from the transition from low to high frequency time series is done in 

section 4. Finally, we provide conclusions and future work in section 5. 

2 Methods 

2.1 Forecasting with multilayer perceptrons 

Forecasting with NNs provides many degrees of freedom in determining the model 

form and input variables to predict a dependent variable ŷ. Due to the large degrees of 

freedom in modelling NN for forecasting, we present a brief introduction to 

specifying feedforward NN for time series modelling; a general discussion is given in 

[11, 12]. Through specification of the input vector of n lagged realisations of only the 

dependent variable y a feedforward NN can be configured for time series forecasting 

as ŷt+1 = f (yt, yt-1, … , yt-n+1), or by including i explanatory variables xi of metric or 

nominal scale for causal forecasting, estimating a functional relationship of the form 

ŷ = f (x1, x2,..., xz). By extending the model form through lagged realisations of the 



independent variables xi,t-n and dependent variable yt-n more general dynamic 

regression and autoregressive (AR) transfer function models may be estimated. To 

extend the autoregressive model forms of feed-forward architectures to other 

stochastic processes, recurrent architectures incorporate moving average components 

(MA) of past model errors into the model, in analogy to the ARIMA-Methodology of 

Box and Jenkins [13]. Forecasting time series with NN is conventionally based on 

modelling a feed-forward topology in analogy to an non-linear autoregressive AR(p) 

model using a Multilayer Perceptron (MLP) [1, 14]. The architecture of a MLP of 

arbitrary topology is displayed in figure 1.  

 
Fig. 1: Autoregressive MLP for time series forecasting 

 In time series prediction, at a point in time t a one-step ahead forecast ŷt+1 is 

computed using p=n observations yt, yt-1,…, yt-n+1 from n preceding points in time t, t-

1, t-2, …, t-n+1, with n denoting the number of input units of the NN. Data is 

presented to the MLP as an overlapping set of input vectors formed as a sliding 

window over the time series observations. The task of the NN is to model the 

underlying generator of the data during training, so that a valid forecast is made when 

the trained NN is subsequently presented with a new input vector value [15]. The 

network paradigm of MLP offers extensive degrees of freedom in modelling for 

prediction tasks. Structuring the degrees of freedom, each expert must decide upon 

the selection and sampling of datasets, the degrees of data pre-processing, the static 

architectural properties, the signal processing within nodes and the learning algorithm 

in order to achieve the design goal, characterized through the objective function or 

error function. For a detailed discussion of these issues and the ability of NN to 

forecast univariate time series, the reader is referred to [1]. The specification of the 

input vector has been identified as being particularly crucial to achieving valid and 

reliable results followed by the specification of the number of hidden nodes [16, 17]. 

Both will be examined in the next section. 

2.2 Input variable selection for multilayer perceptrons 

The identification of relevant input variables and variable lags aims at capturing the 

relevant components of the data generating process in a parsimonious form. In time 

series modelling, it is closely related to identifying the underlying time series 

components of trend and seasonality and capturing their deterministic behaviour in 



lags of the dependent variable. A simple visual analysis of the time series components 

frequently fails to reveal the complex interactions of autoregressive and moving 

average components, multiple overlying and interacting seasonality of different cycle 

lengths and nonlinear patterns. Several methodologies have been suggested for input 

variables selection of the significant lags in forecasting, most originating from linear 

statistics and engineering. However, there exists no uniformly accepted approach to 

identify linear or nonlinear input variables [4]. After reviewing the alternative 

methodologies suggested in literature for specifying the input vector of MLPs, the 

most widespread approach was found to be a form of stepwise regression [18-20]. 

The approach employs a conventional stepwise regression to identify the significant 

lags of the dependent variable and uses them as inputs for the MLP, with 

straightforward extensions of this approach for multivariate modelling [19]. 

Conventionally, the parametric approach of linear stepwise regression assumes a 

stationary time series, which must not be satisfied for trended or seasonal time series 

patterns. However, no consensus exists on whether a time series with identified trend 

should be detrended, and whether a seasonal time series should be deseasonalised first 

to enhance the accuracy of NN predictions [3, 21, 22]. Alternatively seasonality or 

trend be incorporated in the NN structure using additional model terms and 

explanatory variables [23-25]. As removing trending and / or seasonality prior to 

identifying significant lags may impact on the structure of the identified input vector, 

we evaluate three candidates of stepwise regression using (a) the original time series, 

(b) the detrended time series, and (c) deseasonalised versions of it. The resulting input 

vectors were different in structure and length, and were used as competing candidates 

to specify the input vector for the original, undifferenced time series.  

 

 A problem largely neglected but directly related to identifying significant lags 

from the time series is setting a maximum number of lags into the past the input 

vector should be explored for significance. The common practice involves the use of 

an arbitrary heuristic, e.g. using lags up to three seasons and hence 36 lags, or through 

an iterative trial and error process during modelling similar to the ARIMA-

methodology. While both approaches may be feasible for low frequency data, they 

fail for high frequency time series where the large sample size for each lag induces 

low significance bounds. As a result most lags in the past become statistically 

significant and should be included in the model, although a particular seasonality may 

be best captured by including only the relevant lag of the true season. As the 

significance of lags further in the past does not fade away as with low frequency data, 

all lags up to an arbitrary maximum would be included, creating very large input 

vectors. Despite its universal relevance for NN, Regression and ARIMA-modelling, 

this issue has not been explored in literature, with the exception of one paper noting 

the issue in the context of forecasting low frequency time series with MLPs [26]. As a 

solution to determine the maximum lag number that is required for high-frequency 

time series, we propose a method based on the Euclidean distance of a seasonal year-

on-year-plot. Assuming no prior seasonal information, the time series of length n is 

split into n / s ‘seasons’ of different length, with s = {2, 3, 4, … , n / 2), and the 

Euclidean distance between all observations across seasonal sub- series is calculated. 

The seasonal length s* that minimises the Euclidean distance indicates the minimum 

possible deviation (in squared error terms) of the seasons in a seasonal plot, thus 



providing an indication of seasonality and an upper limit of using 3*s as a maximum 

lag length. The global minimum identifies the strongest single seasonality, while local 

minima found in this sense reflect the minimum distances as seasonality increases, 

indicating seasonality or multiples of seasonality. The identified seasonality then 

provides relevant modelling information of single or multiple seasonality to be 

incorporated into the input vector [25], using the Euclidean distance. (For example, 

assuming a daily time series, which exhibits both day of the week and day of the year 

seasonality, the Euclidean distance will reveal both seasonalities, with the weekly 

being 7 observations and the annual being 365 observations.) 

 

 Regarding the selection of the number of hidden layers, theory regarding 

universal approximation [5, 6] suggests that one hidden layer is sufficient to invoke 

the universal approximation properties of the NN. Therefore, the question on 

specifying the network topology may be simplified to specifying the number of 

hidden nodes to include in the single layer. For time series of varying frequency, prior 

research indicates that a different number of hidden nodes maybe required depending 

on the pre-specified input vector of different length [27]. To reflect this, we employ a 

wrapper with a constant grid size to select the correct number of hidden units, which 

reflects the most popular approach to specifying the NN architecture [4].  

3 Experimental design 

3.1 Exploratory data analysis and input vector specification 

The ESTSP 08 competition provided three time series without any information on the 

domain of origin nor on the time series frequency, which are displayed in fig.2. As 

each time series may contain different characteristics, they are explored using the 

Seasonal Euclidian distance and the Augmented Dickey-Fuller (ADF) test for trend. 
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Fig. 2: The three ESTSP’08 time series 



 The first time series of the competition, plotted in fig. 2a, is comprised of 354 

observations plus two explanatory time series to aid with the modelling of the time 

series. No domain knowledge on the time series is provided. The objective is to 

forecast the next 18 values. Applying the Euclidean distance approach a seasonality of 

12-observations is identified; hence the time series is treated as monthly data 

containing 29.5 years of data. The abundance of data allows the use of three full 

seasons to identify the input vector. The ADF-test indicates the absence of trend, 

leaving only two options to model the input vector regarding pre-processing of the 

time series: both the original time series (1.a) and the time series after taking a 12
th

 

order difference to remove the seasonality (1.b) is used. Note that the seasonal 

differenced time series is used only for the stationary identification of the input vector 

- the NNs are modelled only on the original time series. 

 

 The second time series of the competition contains 1,300 observations without 

any explanatory time series. The objective is to forecast the next 100 values. Using 

the ADF-test an instationary time series with trend is identified. However, careful 

visual inspection of the time series and the seasonal series plot indicates a structural 

break in the form of a single level shift, visible in fig. 2b, rather than a continuous 

trend. As a consequence no 1st order differencing is required. Using the Euclidean 

distance approach seasonality of 7 and 365 observations are identified and we may 

infer that the time series contains daily observations. The significant lags are 

identified on the original time series (2.a), applying a 7
th

 order differencing (2.b), a 

365th order differencing (2.c) and both differences (2.d) in order to identify possible 

input vectors candidates.  

 

 The third time series of the competition, plotted in fig. 2c, contains 31,614 

observations; the objective is to predict the 200 next values. The ADF-tests identifies 

no significant trend. Using the Euclidian distance approach we identify three 

potentially overlaying seasonalities of 24, 168 and 8,760 observations, indicating an 

hourly time series with hour of the day, day of the week, and day in the year 

seasonality. This provides several alternative input vectors by applying different 

levels of seasonal differencing, including the original series (3.a), the 24
th

 (3.b), the 

168
th 

(3.c), and the 8,760
th

 differenced series (3.d), plus four combinations or the 

differences. All identified candidate input vectors will be constructed and evaluated in 

a set of NN candidates, which are specified in the next section. 

3.2 Artificial Neural Network models 

We construct a set of conventional MLPs using a consistent methodology, where all 

modelling parameters are identical but the choice of the input vector and the number 

of hidden nodes, as specified above. In addition to the lagged inputs of the dependent 

variable and possible explanatory time series identified through the stepwise 

regression analysis, where applicable, a set of additional inputs was as a set of 

candidates for all time series. A single integer variable was used to code a 

deterministic seasonality, in contrast to conventional s-1 binary dummies that 

substantially increase the size of the input vector. This was done in order to capture 

additional aspects of the seasonality in addition to the AR(p) terms modelled through 



time lagged realisations, as suggested from previous studies [24]. Also, binary 

dummies were introduced to code level shifts for time series 2.  

 

 All MLPs apply a single output node with the identity activation function for a 

on-step-ahead prediction of t+1. Due to the possible interaction of the input vector 

size with the number of hidden nodes in a single hidden layer we evaluate different 

NN models for every input vector candidate using a stepwise grid-search with 2, 4, 6, 

8, 10 and 12 hidden nodes to be considered for model selection. All hidden nodes for 

time series 1 and 2 apply a hyperbolic tangent as the activation function, while time 

series 3 uses the logistic activation function. This choice was made due to problems 

discovered during training of the 3rd time series, most probably due to the length of 

the time series resulting in a large number of training examples and the high degrees 

of freedom of the relevant neural network candidates. Each MLP is trained using 

simple back-propagation with momentum for 1,000 epochs or until an early stopping 

criterion is satisfied. For the early stopping criterion the mean squared error (MSE) is 

evaluated every epoch, and training is halted if no improvement was made for 

hundred epochs. The initial learning rate is set to η=0.5, applying a cooling factor ∆η 

to reduce the learning rate by 0.01 per epoch; the momentum term is kept constant at 

φ=0.4. All data is pre-processed using linear scaling into the interval of [-0.6, 0.6] and 

presented to the MLP using random sampling without replacement. Each MLP 

candidate is initialised 40 times with random starting weights in the interval of [-

0.6, 0.6] in order to avoid local minima during the training and to provide an adequate 

error distribution using sufficient results. 

3.3 Model selection 

Given the large number of different alternative candidate models created, applying a 

different number of hidden nodes, input vectors and across the 40 initialisations used 

in training, model selection of the MLP candidate which promises the best out-of-

sample performance on unseen data can be very challenging. The limited prior 

performance of NN, and, in particular, their low consistency and robustness of 

performance across homogeneous datasets in time series prediction [8] can in part be 

contributed to suboptimal model selection using a simple 1-fold cross validation. In 

contrast to selecting the best performing MLP candidate, we consider an ensemble of 

diverse candidates to generate average predictions. In addition to substantial evidence 

in classification that ensembles of simple methods perform well, this has long been 

confirmed for time series prediction, e.g. at the M competition, where a simple 

average of all competing methods performed better than each of the competing 

methods itself[2]. Based on this finding we rank all the MLP candidates for each time 

series, select the 10 best models and average their forecasts for each future horizon. 

These ensemble forecasts circumvent aspects of the challenges in model selection, 

however pose additional problems in evaluating different ensemble schemes. The 

ESTSP’08 competition assesses the accuracy of the models using a normalised mean 

squared error (NMSE) for each time series averaged over all three series. In order to 

align the performance metric for parameterisation and model selection with the final 

metric, a MSE proportional to the final metric was used during model development. 



4 Experimental results 

The composite ensemble forecasts for time series 1, 2 and 3 are given in fig. 3.  
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Fig. 3: Forecasts for the ESTSP’08 time series 

 Due to the large number of different MLP candidates evaluated and the space 

constraints it is infeasible to provide a comprehensive overview of the experimental 

results and architectures of the individual candidate models. Therefore we will restrict 

our discussion to some generalised findings: 80% of the top 10 candidate models 

(which were used to create the composite forecasts) uses an integer dummy variable 

to code each deterministic seasonality of different length, implying that this strategy 

aids the model to capture the complex overlying seasonal forms. For the candidate 

approaches for which the input vector was identified both on the original and the 

differenced time series, both model forms were always selected to be within the top 

10 across all time series, implying that these approaches are complementary. An 

unexpected finding was that the univariate models for time series 1 outperformed all 

multivariate models using the two additional explanatory time series. This reduced the 

complexity of creating the final forecasts, as no predictions for the explanatory time 

series were required and no accumulation of the errors due to inaccurate forecasts of 

the explanatory variables could be introduced into the final forecasts of time series 1.  

5 Challenges in modelling high frequency data 

One elementary characteristic of high frequency time series data is the increase in 

length of the time series given a constant time interval, and the resulting increase in 

training vectors. For the frequencies employed in the ESTSP’08 competition the 

hourly time series would be 24 and 720 times longer than the daily and the monthly 

time series, had an identical time period been used. This difference in the sample size 

creates several challenges in the three frequency domains even though an identical 



same modelling procedure is followed. The most important implications for this set of 

experiment, handling the degrees of freedom, input vector length in model 

identification and computational time, are outlined in Table 1 and discussed below. 

Time Series  Frequency 

Average  

no. of inputs 

% Difference  

in inputs 

Maximum 

time lag 

% Difference 

in lag 

1 Monthly 7 - t-36 - 

2 Daily 30 328.57% t-392 988.89% 

3 Hourly 354 4957.14% t-9072 25100.00% 

Table 1: Average number of inputs and maximum time lag per time series. 

5.1 Degrees of freedom 

This analysis employed several ways to identify the input vector for each time series. 

These derived from different options on performing seasonal differencing in the 

presence of a single or multiple seasonalities, or not. Across all number of input 

vectors determined for each candidate we compute the average number of inputs for 

each time series. The findings listed in table 1 exemplify the magnitude of the 

increase in both the size of the number of inputs used for time series of increasing 

frequency, and of the resulting increase of the degrees of freedom purely from the 

number of input nodes. This illustrates the increased complexity of training a MLP as 

the data frequency increases. Taking into consideration the number of hidden nodes, a 

candidate model developed for the hourly time series would use 2,478 parameters on 

average, in comparison to only 49 for the monthly time series. The implications this 

has for the training are apparent, as well as the difficulty of solving such a complex 

optimisation problem. Further interactions seem to exist also with alternative 

modelling choices: for time series 3 the architectures using a hyperbolic tangent 

activation function in the hidden layer could not be trained using backpropagation, as 

the optimiser could not cope with the degrees of freedom. This suggests the need for 

future research regarding NN topology, not only with regard to predictive accuracy 

but also with regard to robustness and consistency of the architecture. 

5.2 Model identification 

In addition to the increase in input vector size, our experiments identified a positive 

correlation between the frequency of the time series and the size of the search space 

required to find suitable input lags. This is again illustrated in table 1, where the 

maximum lag that was evaluated for each time series is provided. Not only does the 

input vector for time series of higher frequency increase in size, the maximum time 

lag to be considered also moves further into the past. Most methodologies to identify 

the input vector based upon wrappers, grid search, exhaustive random search, genetic 

algorithms and other meta-heuristics based on computational force are bound to 

encounter constraints in providing results in a reasonable time frame.  In contrast, the 

filter approach based upon an iterative stepwise regression equally requires long 

computation times to identify the appropriate lags to use, proportional to the increase 

in the search space. On the other hand, filter approaches utilising the autocorrelation 

and the partial autocorrelation information of the time series are limited in their 

accuracy to provide useful information for model identification due to the increased 



number of significant lags resulting from a growing sample size and tight confidence 

intervals. Consequently, modelling time series of higher frequencies requires the 

careful consideration of the trade-of between compute power, filter and wrapper 

based approaches.  

5.3 Computational time 

The regression approach employed here appears to be adequate for the time series 

frequencies in question, providing solid identification of the relevant time lags for 

forecasting in an acceptable time. However, computational time varied substantially, 

ranging from virtually instantaneous for the time series 1 and 2 to several hours for 

time series 3. Experiments for the first two time series were computed on a 2.2 GHz 

INTEL dual core processor with 3 GB of RAM, running 2-3 hours. For the third time 

series initial computations identified resource problems. As a consequence the 

experiments were computed on a high performance cluster with two dual core 

processors at 2.4 GHz with 10GB of RAM dedicated for this task, which required 

several days. It appears that experiments on high frequency data require additional 

computational power beyond the scope of normal personal computers, in particular 

for multiple architectures and model ensembles. Alternatively, these may provide the 

requirements for developing alternative training methods to perform well for large 

datasets under the current computational resources constraints.  

6 Conclusions 

This paper proposes an initial methodology for automatic modelling of time series 

with arbitrary time frequencies, seasonalities and trends, using the true ex ante 

predictions of the ESTSP’08 competition. The principle of the model is to compute 

competing candidate models of MLPs with different input vectors utilising varying 

temporal information on trends, stochastic and deterministic seasonality through 

autoregressive (AR) and / or integer dummy variables respectively. In order to omit 

the need of manual intervention we employ a composite ensemble forecast from the 

10 best models on the in sample performance of each time series. Ways to avoid 

arbitrary modelling decisions are described, concerning the selection of the input 

vector, number of hidden layers and the hidden nodes. The proposed methodology, 

which is based on established tools and methods, manages to surpass the problems 

that trouble most neural network methodologies in literature when facing sets of time 

series of varying time granularity and frequency. 

 

 The analysis finishes with identifying some of the main problems encountered 

in the extension of the methodology towards high frequency data. Given the 

computational resources, high frequency data remain to be extremely demanding and 

limit the amount of ad-hoc experimentation. Unique problems arise that are beyond 

the scope of this paper, requiring further research. There is an apparent need to 

explore the possibility of training the MLPs in a way that the sheer amount of data 

will not require unreasonably long time and can cope with the increased degrees of 

freedom of the neural network models.  
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