0-7803-9048-2/05/$20.00 ©2005 IEEE

Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

Evolutionary Neural Classification for
Evaluation of Retail Stores and Decision Support

Robert Stahlbock
Inst. of Business Information Systems
University of Hamburg
D-20146 Hamburg, Germany
E-mail: stahlboc @econ.uni-hamburg.de

Abstract— The neural network paradigm of learning vector
quantization (LVQ) and several enhancements of the standard
algorithms have demonstrated improved predictive accuracy
when applied to simple ’toy’ problems. In this paper, we propose
a novel approach of evolutionary optimized LVQ classification
applied in real-world business decision support. We predict the
success of retail outlets of a multinational German company
in terms of revenue and profit. The predictions are used to
support investment decisions, establishing new stores or closing
down existing ones with limited prospective profits. In addition,
the predictions provide information to change in-store design
or product lines of existing stores. The LVQ networks are
trained on data reflecting the macroscopic socio-demographic
infrastructure and microscopic in-store aspects of existing outlets.
Results of numerous computational experiments in a parallelized
PC network are compared with standard neural networks,
demonstrating pre-eminent results of the novel method.

I. INTRODUCTION

This paper proposes the application of an evolutionary built
artificial neural network on an economic real-world classi-
fication problem. A genetic component provides improved
selection of input variables for achieving higher classification
accuracy. For comparison reasons, manually parameterized
standard LVQ is applied as well. Locations of retail stores are
classified in terms of sales volume to support decisions that
have strong impact on large investments for stores. This main
decision has long-term character and induces high fix costs.
More detailed decisions on in-store design and assortment of a
certain store are more flexible and can more easily be revised
in case of an unprofitable decision. All decisions have impact
on sales quantity and therefore on the important cash flow.

The organization of this paper is as follows. In Section II,
the ideas of standard LVQ are presented briefly. References
to enhancements are given. In Section III the new developed
combination of evolutionary algorithms and slightly modi-
fied LVQ algorithms is shown. Fitness functions are briefly
discussed and a parallelized implementation is suggested.
The problem — evaluation of locations for retail stores and
decision on their in-store design and assortment — is proposed
as a multi-class classification task in Section IV. The real-
world scenario and computational experiments are described
as well as their results. An interpretation of these results is
suggested and exemplified. Section V concludes the paper with
a summarization and perspectives for further developments.

Sven F. Crone
Dep. of Management Science
Lancaster University Management School
Lancaster LA1 4YW, United Kingdom
E-mail: s.crone @lancaster.ac.uk

II. CLASSIFICATION WITH LVQ

Classification is the process of assigning a class label y
to an object with observed measurable attributes expressed in
Z. With a sufficient large set of available examples (Z,y), a
machine for supervised learning of the mapping £ — y can be
constructed. The objective of a classification process is to find
a specific learning machine which captures the relationships
in the representative training examples not for building useless
overfitted models by memorizing but for generalizing the
problem structure from the underlying data generator. The
generalization ability allows correct classification of unseen
objects based on their attributes’ values only. A decision maker
should be interested in this performance under generalization
conditions.

Learning vector quantization implements a supervised near-
est neighbor pattern classifier providing substantial gain in
learning speed and performance. The LVQ is regularly applied
in pattern recognition, multi-class classification and data com-
pression tasks in widespread areas such as robotics, linguistics
or data-mining. In terms of artificial neural networks (ANN),
LVQ is a feed-forward, hetero-associative, winner-takes-all
ANN, related to self-organizing maps [1]. It includes an input
layer (one neuron per input variable), a Kohonen layer with
neurons that learn and perform.the classification, and an
output layer (one node for each class). The number of the
hidden Kohonen neurons is either predisposed by the user or
dynamically determined by enhanced algorithms.

The weight vector of the weights between all input neurons
and a hidden neuron j is called a codebook vector (CV)
w; = (wij,...,wrj). Each CV can be seen as a hidden
neuron. A CV is a prototype representing a labelled region
(a ’cell’) in input space formed by all Z. A class can be
represented by an arbitrarily number of CVs, but one CV
represents one class only. During training process, the weights
are changed in accordance with adapting rules changing the
CV’s position. The basic LVQ algorithm rewards correct
classifications by moving the ’winner’ w, (the CV being
nearest to the presented input vector) towards T, whereas
incorrect classifications are punished by moving the CV in
opposite direction. Thus, presented patterns attract prototypes
of the correct class, whereas prototypes of other classes are

1499

repelled. Since class boundaries are built piecewise-linearly
as perpendicular bisector planes of lines joining pairs of
neighboring CVs, the class boundaries are adjusted during the
learning process. The tessellation of input space induced by
the set of CVs is optimal if all data within a CV’s cell indeed
belong to the same class. Kohonen has shown that Bayes’
optimal class boundaries can be approximated well by LVQ-
algorithms.

After the learning process, classification is based on a
presented sample’s vicinity to the CVs: the classifier assigns
a CV’s class label to all samples that fall into the CV’s
cell, i.e. the label of the CV nearest to the sample. The
core of the heuristic algorithms, which do not optimize fixed
criteria directly, is based on a distance function for comparison
between an input vector and all CVs. Usually the Euclidean
distance is used. The distance is inversely proportional to the
degree of similarity between presented input vector and CVs.
The definition of class boundaries by LVQ does not depend
on the distance function only, but also on the start positions
of CVs, their adjustment rules as well as on the pre-selection
of distinctive input features.

The basic LVQI suffers from various shortcomings, e.g.
the tendency for pushing CVs away from Bayes decision
surfaces. Variants have been developed to overcome them and
to improve the stability and rate of the convergence process
as well as the classification accuracy. Improved versions are
e.g. Kohonen’s Optimized LVQ! with faster convergence and
LVQ2, LVQ2.1 and LVQ3, that sometimes improve perfor-
mance. For a comprehensive overview and also details of
heuristic learning algorithms of LVQ, readers are referred to
standard ANN literature, e.g. [2], [3]. More detailed infor-
mation can be found in the work of Kohonen, specialized
topics are outlined e.g. in [4], [5]. An overview of statistical
and neural approaches to pattern classification is given e.g.
in [6], [7]. Besides Kohonen’s standard algorithms, several
extensions from various authors are suggested, e.g. LVQ with
conscience [8], LVQ without repulsion [9], Generalized LVQ
[10], Learning/Linear Vector Classification [11], Distinction
Sensitive LVQ [12], Dynamic LVQ [13], LVQ with Weighted
Objective Function [14] or LVQ with Training Count [15].
Newer developments are another Generalized LVQ [16], Gen-
eralized Relevance LVQ [17], Robust Soft LVQ [18] or LVQ4-
algorithms with promising performance and results [19].

ITII. EVOLUTIONARY DEVELOPMENT OF LVQ
A. Genetic LVQ

Evolutionary algorithms (EA) are meta-heuristics imitating
the biological evolution, which can be seen as a long-term
optimization process for solving mathematical optimization
problems based upon Darwin’s ’survival of the fittest’. Prob-
lem solutions are abstract ’individuals’ in a population. Each
solution is evaluated by a fitness function. The fitness value
expresses survivability of a solution, i.e. the probability of
being a member of the next population and generating ’chil-
dren’ with similar characteristics by handing down genetic
information via evolutionary mechanisms like reproduction,

variation and selection, respectively. In conjunction with neu-
ral nets, EAs can be used for solving problems like, e.g.,
optimization of the net’s weight matrix, the topology or the
net parameters, or for determination of the most reasonable
input data. Genetic algorithms (GA) are a subgroup of EAs.
The main characteristics are a population size greater one
and reproduction/variation not only by mutation of gene(s)
within a single chromosome but also by the main operator
of crossing over. The latter combines genetic information of
parents (characteristics of two solutions) in order to get two
children (new solutions).

The coding of the problem into a genetic representation, e.g.
the sequence of the phenotype’s parameters on a genotype,
is crucial to the performance of the GA. To be efficient and
promising, a GA has to fulfill several criteria, e.g. complete-
ness, compactness and short schemata (see e.g. [20], [21], [22]
for an overview and more details).

The EA-based development of ANNS is an iterative process.
A net is constructed by transferring the genotype’s genetic -
code into a phenotype. After learning (and cross-validation if
appropriate), a net is evaluated by a fitness function. Genetic
operations use this quality information for building a new
population of nets, which are trained, tested and evaluated
again. Thus, the whole learning process can be seen as
subdivided into a microscopic cycle for learning of a net and
a macroscopic evolutionary one. The iterative learning process
of ANN:S itself is a part of the whole development process for
ANN:E, starting from problem modelling and ending at usage
and maintenance of a net [23].

Combinations of GAs and LVQ can be found e.g. as G-
LVQ in [24] or as LVQ-GA in [25]. The GA of G-LVQ
aims at an improvement of number and initial position of
hidden neurons for optimizing classification accuracy, net’s
size and data representation separately. LVQ-GA uses a binary
gene representation for input neurons and, therefore, for input
data selection, and an integer coding for determination of the
number of hidden neurons and their initial positions.

We develop a new GA-LVQ similar to LVQ-GA. The chro-
mosomes contain coding of those net parameters which have
to be genetically varied in order to get net variations. In GA-
LVQ, the importance or influence of input variables is coded
by decimal values controlling "activity’ of input neurons. They
affect the algorithm’s central measure of distance between CVs
and input vectors by weighting components of the Euclidean
distance. Moreover, the number of hidden neurons is coded
directly. Their initial positions nearby or equal to training
patterns are coded by a random seed influencing the process of
initializing. Finer parameters like number of learning iterations
or learning rate can be coded principally, but are not used in
our experiments. The number of output neurons is externally
determined by the number of classes. Thus, the decimal coding
of input neurons is a refinement of the binary coding. The
binary coding allows only binary decisions, whether an input
value is used in the classification process — the input neuron
is active — or not. The decimal coding does not only include
the binary coding, but also allows graduation. This graduation

1500

is implemented by weighting the values of an input feature
for calculating the distance, which is a key factor for the
results in classification process with a distance based method
like LVQ. For each input neuron i (or each input variable,
respectively) a decimal weight 1; with 0 < v; < 1 is coded
on a gene. A rough graduation seems to be sufficient, e.g. ¥; €
{0;0.25;0.5;0.75; 1}, ¢; € {0;0.1;...;0.9;1} or even finer.
With 1; € {0;1}, the decimal coding is equivalent to binary
coding. With this ’relevance weight’ 1;, a modified weighted
Lo-norm |.||3 can be calculated by ||Z||¥ = -ﬂ/Efil T2ep;.
A weighted Euclidean distance ¢, between two vectors @ and
b substituting the typically used Euclidean distance ¢ is given
by using these relevance weights:

-

N
G (@) = 1~ B¥ =+ 3 (@ — b))% .
1=1

¢y = ¢ is valid for 9, = 1. The ¢-weighting of a feature ¢
has influence on its impact on the distance by shortening its
distance component more (with low factor ;) or less (with
high factor ;).

Genetic operators are one- or two-point-crossover and muta-
tion. The crossover is only applied to the gene section coding
the input neurons in order to get only genotypes that lead
to valid, applicable phenotypes. Furthermore, this section can
also be varied by mutation of a single gene, inversion of a gene
sequence or exchange of two genes. Genes coding number
of hidden neurons and initialization parameter are varied by
mutation only, i.e. adding or subtracting a value within a valid
range. A high rate for crossing over and low rate for mutation
are recommended.

For a high degree of automatization, a destabilization is
implemented. It interrupts an optimum search being too local
and makes the GA more flexible. Destabilization in this sense
means ’death’ of accidentally selected ’individuals’ and re-
placement with accidentally constructed new ones. The desta-
bilization occurs if a critical fraction of identical or similar
individuals — measured by comparison of all genes or essential
gene sections — within a population exists. The number of
existing individuals to be taken into the new population can
be controlled by a ’rate of survival’. A rate of null is equivalent
to a restart of an experiment.

The simplest criterion for selection of parents is the fitness
value of a net. Alternatively, a group of some nets differing
in their initialization value only can be considered in order to
make evaluation more independent from a net’s initialization.
The group’s fitness can be calculated as arithmetic mean of
the single values of each net. For a focus more on the impact
of a certain initialization value, only the best fitness within
a group can be used as selection criterion. Time consuming
computations for different initializations can be supported well
by parallel implementation of the algorithms (see Sect. III-
C). The selection itself can be implemented as tournament
selection or as fitness-proportional selection (presuming a
reasonable scaling of fitness values). For details of GA-LVQ
and the complete ANN model building process see [23].

B. Fitness function

The fitness function is the crucial factor for evaluation
and evolution of neural nets providing satisfactory and stable
results in real-world applications. In case of fitness maxi-
mization, a high fitness value should correspond with good
results and a low value with poor results — not only for
training data, but also for validation and generalization data.
Therefore, it should be checked whether the chosen fitness
function favors nets with satisfactory generalization ability in
order to select useful neural nets systematically instead of
accidentally. For a representative overview, it is helpful to
compute and evaluate as many nets as possible in maintainable
time (hundreds/thousands). Again, parallelized implementation
helps in performing the necessary high computing power.

The fitness function should represent the user’s objective. In
conjunction with ANN, it allows to evaluate and control the
superordinated evolutionary learning process, thus enhancing
the goals that the nets’ algorithms are aiming at. For some
classification tasks, the mean classification rate (M CR) may
be sufficient. Taking (asymmetric) costs for misclassifications
into account seems to be more versatile and also realistic (see
e.g. [26] with application of asymmetric cost functions for
time series prediction). A fitness functions F' for three-class-
problems can be e.g. one of the following exemplary ones
(with n?‘j as number of correctly classified pattern of class
Yy, my as number of all patterns belonging to class y and
CR, = n; /my), applied to a training subset (or better a
hold-out subset) of data:

F=MCR=(CR; + CRy + CR3)/3 (1)
F=CR, CR; @)
F=CR,-CRy-CR; 3)

F — MCR'™ . pf Rvalidation ()

Fitness function (2) aims at uniform high classification rates
for classes 1 and 3, whereas fitness (3) favors consistent
classification rates for all three classes. Functions aiming at
even results on two different subsets of data can be constructed
too, see e.g. fitness (4). Instead of searching for an all-purpose
net for all classes, an approach for finding ’expert nets’
specialized for the subtask of recognize patterns belonging to a
special class may be sufficient. Besides these direct measures
of performance in terms of classification rates, a fitness
function can include "costs’ for net complexity, e.g. expressed
as number of input variables and/or hidden neurons (as in
[25]). In general, less complexity means better generalization
ability. Thus, the formulation of an appropriate fitness function
is highly dependent on the specific problem to be solved.

Capability of both the LVQ nets and the used fitness
function can be evaluated graphically. The results of nets
are sorted in descending order of the fitness value (in case
of maximizing fitness). The separate charting of fitness val-
ues or classifications rates for different data sets (used for
learning and tests of validation and generalization) in a two-
dimensional scatter diagram allows for comparison of values

1501

per z-coordinate and evaluation of the degree of correlation
between the fitness used to control the evolutionary process
and the fitness for unknown (’real’) data. Ideally, results on
training/validation/generalization data are rudimentary propor-
tional (see s-curve in Fig. 1(a)). It can be assumed that a
net with high fitness value also yields a satisfactory result for
unknown data and therefore can be reasonably selected for
application. Fig. 1(b) shows the contrast: it is impossible to
conclude that a high fitness value implies a good generalization
result. Nets with good results in application are not preferred
systematically within the evolutionary process. A selected
net is more or less arbitrarily 'good’ (or ’poor’). Note, that
identical scaling on y-axis for both plots is not necessary.

fitness (e.g. average classification rate)

— validation data
s generalization data

fitness (e.g. average classification rate)

—— validation data
wmmm generalization data

rank
(b) poor generalization and/or
improper fitness function

rank
(a) ideal distributions

Fig. 1. Fitness (validation), corresponding results (generalization)

C. Parallelized Implementation

Parallelization allows higher computational performance,
i.e. a higher number of calculated nets per time unit, which is
nearly proportional to the number of clients in a PC network.
Overhead of technical management and communication is
negligible. More calculated nets mean more results, that allow
a more valid evaluation and analysis of the solution methods’
quality. Among other forms of parallelization (see e.g. [13]),
at least the following three ones (or combinations of them)
can be applied in combination with LVQ:

« Initialization: one LVQ with m different initializations is
calculated on m computers. This allows a more general
evaluation of a net topology independent of the initial-
ization, which may have strong impact on results.

o Data: m different combinations of data sets are used on
m computers. A better estimation of generalization ability
seems to be provided.

« Individuals: m LVQs of a population (in case of GA) are
computed simultaneously on m computers.

The genetic development of LVQs can be parallelized in
a scalable PC network with one server administrating the
population and the genetic algorithm, and one to m LVQ-
clients, each of them getting instructions from the server for
computing one LVQ at a time and delivering the result, i.e. a
fitness value.

We develop server and client software, coded in Visual
Basic and C. Minimum equipment is one PC running both
server and client. The maximum reasonable number of clients
is the number of individuals in a population. A more efficient
number is in the range of the average number of solutions

to be calculated for a new population. At the moment, GA-
LVQ supports Kohonen’s LVQ1 and LVQ2.1 only, but en-
hanced LVQ algorithms can be implemented easily. Verifying
experiments succeed: GA-LVQ is applied to the well known
iris dataset with additional useless input variables, that are
correctly recognized and eliminated by 1-weights = 0.

IV. EMPIRICAL EVALUATION
A. Evaluation of retail stores

For the evaluation of a location of an existing store in terms
of sales volume or of an eligible location of a newly planned
store, a more or less rough classification of (expected) sales
volume is sufficient (for theory and details of locations’ eval-
uation see e.g. [23]). Therefore, forecasting or estimating the
sales volume can be seen as a classification problem. Results
of a classification process should be used as completion of
knowledge of human experts working in the field, e.g. for
building a priority list for locations to be inspected in detail,
not as substitution for invaluable human skills.

The data pool consists of external macroscopic up-to-date
data describing socio-demographic, economical infrastructure
at a specific location, e.g. number of homes and residents,
retail turnover for different branches of trade, discretionary
buying power of a region or number and type of retailers, as
well as internal microscopic data describing economical and
technical figures of existing stores, e.g. kind of assortment,
configuration/equipment components, year of last redecora-
tion, sales volumes for different periods, or sales area. A
total of 26 input variables is given. Sales volumes of the
product line we are interested in are partitioned in three classes
corresponding to three possible decisions concerning location
policy:

« high: “establish new store/continue business at store’,

o medium: ’analyze location more detailed, e.g. assortment

or in-store design,

o low: "do not establish new store/shut down existing store’.
The task is to classify locations/stores, that are described in
numerical data patterns of values for external and internal
properties of locations and stores. Furthermore, interpretation
of classification results should lead to decisions on assortment
and in-store design for upgrading a store to be a member of
a class with higher sales volume in the future.

B. Computational experiment in a real-world scenario

For each class approximately the same number of examples
is available. Sales volume of stores that are opened or closed
within a calendar year are extrapolated based on a seasonal
(monthly) distribution. Furthermore, data are pre-partitioned
for large, medium and small cities. Class memberships differ
for each type of city, because decision rules and definitions
of ’high’, *medium’ or ’low’ sales volumes differ. Disjoint
data sets for learning, validation and generalization tests are
randomly selected from the entire data. Different constellations
are used for several experiments in order to get general
results for estimation of the methods’ performance. Learning
data consist roughly of 40-70% of available data records,

1502

validation data has 5-25%, the rest forms the hold-out-set
for out-of-sample evaluation of the classifier’s generalization
performance. For example, 1250 data records are available
for large cities. They are separated in 940 (840, 740) records
forming the learning set, 220 (270, 320) forming the validation
set and 90 (140, 190) forming the generalization set.

Standard LVQ and basic extensions (e.g. turned off repul-
sion in the early training phase or usage of conscience) are
computed as implemented within the commercial software
package NeuralWorks Professional II/Plus with a single PC
providing benchmark results. For these manually developed
nets, an iterative heuristic approach to determine appropriate
net architectures (e.g. number of hidden neurons, learning
rate) is chosen . Each network is randomly initialized with
4 different random seeds leading to alternative (but repro-
ducible) starting positions of CVs. The number of CVs is
set to 5%, 10%, ...25% of the number of training examples
(approximately; each class is represented by same number of
CVs). A standard early stopping rule with variation of its
parameters is used in order to avoid overfitting from learning
data. Alternatively, variations in fixed numbers of iterations
(10/100/500 times the number of learning examples) are ana-
lyzed. All 26 input variables are taken into account. Learning
schedules, i.e. sequences of Kohonen’s standard algorithms,
scaling of input variables and other parameters are taken with
standard adjustments recommended in the documentation of
NeuralWorks or pre-set by the program unless otherwise noted.

In case of GA-LVQ, computational experiments are per-
formed on a network of Pentium-PCs with one server and
up to 60 clients as clients. In most experiments only 20 to
30 clients are used simultaneously in an experiment. Various
fitness functions based on classification rates and including
penalty costs proportional to complexity are applied to the
validation data. Both an early stopping rule and fixed numbers
of iterations are tested as well as variants with binary genetic
codes for active/inactive input neurons and decimal codes
for gradual activity and resulting weighted input values. As
a result of pre-tests, a population size of 200 seems to be
reasonable. An elitist selection, that always carries over the
best net into the next population, is used.

C. Results, analysis and interpretation

Generally, the results of GA-LVQ dominate the results of
manually adjusted LVQs. Within of GA-LVQ results show no
dominant fitness function. All classification rates, especially
the MCR on generalization data, are in the same satisfying
order of magnitude for all three types of city (see Table I,
showing results from those nets that are selected for gener-
alization tests due to their promising results on training and
validation data).

Results of the top 10% of the nets (in respect of MCR
on validation data) show only a slight higher minimum M CR
on generalization data for the manually adjusted LVQs (up to
seven basis points). Even those results are not in the range
of the GA-LVQ’s results. As expected, the fitness charts of
GA-LVQ never show an ideal s-curve for hold-out data, but

TABLE I
MC R FOR GENERALIZATION DATA (MIN/MAX, GROUP OF "BEST’ NETS)

Type of city Small Medium Large
MCR|[%] min max min max min max
LVQ conscience & LVQI & LVQ2 57.7 71.1 50.1 60.7 54.2 58.8
LVQ consc. & no repuls. & LVQ2 584 71.6 50.1 64.1 57.2 59.4
GA-LVQ 68.6 69.7 69.9 71.7 71.8 70.0

a mixture between Fig. 1(a) and Fig. 1(b) with a slightly
decreasing fitness and more variance from high to low rank.
On the other hand, charts of classification rates of conven-
tionally developed nets clearly tend to be similar to Fig. 1(b)
with an almost horizontal scatter plot for generalization data.
The classification rates on validation data give less or no
information about nets’ quality. The user is not able to select
a net that generalizes well and reliably.

Between 7 and 16 input variables are weighted with 0,
the half of the rest is weighted with 0.5. Finer codings
have no observable impact on results. The number of hidden
neurons depends on the number of used variables and is in the
wide range of 30 to 108. Using the non-zero-weighted inputs
as fully weighted inputs for NeuralWorks shows inferior or
similar results, but no improvement at all.

A classification result supports a decision on a location
directly. Furthermore, it allows answering the following in-
teresting questions:

o What are the main properties of a store that make it a
member of a special class? Which decisions on in-store
design influence sales volume?

o Which properties of a location are responsible for a
store’s class of sales volume?

« Which potential for development does a store have? How
can this potential be used advantageously?

The basic idea is to take advantage of a distance based
classifier and interpret CVs and distances between them and
input pattern(s). Distance components (weights w;; from input
neuron ¢ to hidden neuron j7), that have similar values for
all hidden neurons, result only in small distance differences.
Therefore, the corresponding input features have no strong
impact on the classification result. The idea is exemplified
assuming evenly relevant weights of inputs, use of Euclidean
distance and only one CV per class.

Some typical properties of a store are given as ’for-
mat’, type’, ’especially equipped’ and “duration’. Exemplified
weights for analysis of are presented in Table II. Data show
strong influence of ’type’. A store with a type coded as 1 will
be rather classified belonging to class 1 (high sales volume),
a type 0 (scaled to —1) to class 3 (low sales volume). Special
equipment (not specified here) or a short duration (time period
from opening or redecoration) seems to stimulate sales. The
’format’ has less influence. Answers for above mentioned
questions can be derived from similar considerations and what-
if-analyses by varying certain values and computing distances
for classifying. These analyses and interpretations are not
bound to usage of the proposed evolutionary LVQ version.
The main results of the GA-LVQ experiments are feasible:

1503

TABLE 1l
WEIGHTS OF LVQ WITH THREE CVS FOR THREE CLASSES (CUT-OUT OF
EXEMPLIFIED DATA, SCALED INTO [—1; 1])

Class 1 Class 2 Class 3 Weight
Property w;1 wi2 w;3 span
Type 0.65 0.10 —-0.42 1.07
Special equipment 0.41 0.25 -0.67 1.08
Format A —0.97 —0.81 —0.63 0.34
Format B —0.68 —0.88 —0.98 0.30
Format C -0.74 —-0.71 —0.85 0.14
Duration —0.32 —0.09 0.07 0.39

they meet with approval of human experts involved in the topic
of retail stores and evaluation of locations. It should be noted
that classifiers should be seen as add-on tools for decision
support besides profound expert knowledge.

V. CONCLUSIONS

The proposed GA-LVQ shows promising results for de-
cision support in a complex economic real-world classifi-
cation problem. The results dominate results of Kohonen’s
conventionally applied standard LVQs. A fitness function
allows control in respect of decision maker’s goal beyond the
potentials of the LVQ-inherent heuristics. Common problems
like reasonable initialization and values for learning param-
eters like e.g. number of learning steps remain, but they
are mitigated by computation of a high number of nets not
with brute force but rather with ’evolutionary intelligence’
in a parallel PC network implementation. Within the model
building process, decisions on ANN’s topology are automated.
On the one hand the degrees of freedom concerning parameters
of neural learning are reduced, on the other hand new ones
concerning evolutionary learning arise. The shown method
may be enhanced for improvement of results. Enhancements
can be e.g. usage of more LVQs in an ’expert committee’
(each LVQ ’votes’ for a class; influence of different voting
rules can be studied), combination of different classification
methods (e.g. support vector machines; again in a committee),
rejection of classification (if distance between winning CV
and input pattern is too high) or consideration of knowledge
of a-priori probabilities. Furthermore, the examination of the
influence of different fitness functions on classification results
is an interesting research topic. An important information for
decision makers is the quality or significance of results. This
information can possibly be provided by interpretation of the
distances between CVs and the object to be evaluated. Further
studies may also focus on comparison between GA-LVQ and
newer LVQ enhancements like LVQ4 or on implementation
of these newer LVQ algorithms into GA-LVQ. Moreover, the
GA-LVQ should be applied to other real-world classification
problems in order to get a broader overlook and better evalu-
ation of the method’s overall performance.

REFERENCES
[1] T. Kohonen, Self-Organizing Maps, 2nd ed. Berlin: Springer, 1997.

[2] L. Fausett, Fundamentals of Neural Networks : architectures, algo-
rithms, and applications. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[3]1 D. W. Patterson, Artificial neural networks: theory and applications.
Singapur: Prentice Hall, 1996.

[4] J. T. Laaksonen, “A method for analyzing decision regions in Learning
Vector Quantization algorithms,” in Artificial Neural Networks, 2 - Proc.
ICANN-92, Proceedings of International Conference on Artificial Neural
Networks (Brighton, GB), 1. Aleksander and J. Taylor, Eds., vol. 2.
Amsterdam: Elsevier, 1992, pp. 1181-1184.

[5] N.Kitajima, “A New Method for Initializing Reference Vectors in LVQ,”
in Proc. ICNN *95, Proceedings of IEEE International Conference on
Neural Networks (Perth, Australia), vol. 5. 1EEE Service Center, 1995,
pp- 2775-2779.

[6] J. Schiirmann, Pattern classification: a unified view of statistical and
neural approaches. New York: Wiley & Sons, 1996.

[7] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning : Data Mining, Inference, and Prediction. New York:
Springer, 2001.

[8] D. DeSieno, “Adding a Conscience to Competitive Learning,” in Proc.
ICNN 88, Proc. of IEEE Int. Conf. on Neural Networks, vol. 1. Pis-
cataway, NJ: IEEE Service Center, 1988, pp. 117-124.

[9] NeuralWare , Inc., Neural Computing : A Technology Handbook for Pro-
fessional 1l/Plus and NeuralWorks Explorer, NeuralWare, Inc., Technical
Publications Group, Pittsburgh, PA, 1993.

[10] N.R. Pal, J. C. Bedzek, and E. C.-K. Taso, “Generalized Clustering Net-
works and Kohonen’s Self-Organizing Scheme,” in IEEE Transactions
on Neural Networks, vol. 3, no. 4, 1993, pp. 546-557.

[11] M. Verleysen, P. Thissen, and J.-D. Legat, “Linear vector classification:
An improvement on LVQ algorithms to create classes of patterns,” in
New Trends in Neural Computation — Proc. of Int. Workshop on ANN
(IWANN °93), Sitges, Spain, June 1993, J. Mira, J. Cabestany, and
A. Prieto, Eds. Berlin: Springer, 1993, pp. 340-345.

[12] M. Pregenzer, D. Flotzinger, and G. Pfurtscheller, “Distinction Sensitive
Learning Vector Quantisation — a new noise-insensitive classification
method,” in Proc. of Int. Conf. on Neural Networks (ICNN *94), Orlando,
FL, vol. V. Piscataway, NJ: IEEE Service Center, 1994, pp. 2890-2894.

[13] A. Zell, Simulation Neuronaler Netze. Bonn: Addison-Wesley, 1994.

[14] S.-J. You and C.-H. Choi, “LVQ with a Weighted Objective Function,”
in Proc. ICNN'95, Proc. of IEEE Int. Conf. on Neural Networks (Perth,
Australia), vol. 5. IEEE Service Center, 1995, pp. 2763-2768.

[15] R. Odorico, “Learning Vector Quantization with Training Count
(LVQTC),” Neural Networks, vol. 10, no. 6, pp. 1083-1088, 1997.

[16] A. Sato, “An analysis of initial state dependence in generalized lvq,”
in Artificial Neural Networks, 1999. ICANN 99. Ninth International
Conference on (Conf. Publ. No. 470), vol. 2, 1999, pp. 928-933.

[17] M. Strickert, “Self-organizing neural networks for sequence processing,”
Ph.D. dissertation, Dep. of Mathematics and Computer Science, Univ.
of Osnabriick, Germany, 2004.

[18] S. Seo and K. Obermayer, “Soft Learning Vector Quantization,” Neural
Computation, vol. 15, pp. 1589-1604, 2003.

[19] M.-T. Vakil-Baghmisheh and N. Pavesic, “Premature clustering phe-
nomenon and new training algorithms for LVQ,” Pattern Recognition,
vol. 36, no. 8, pp. 1901-1912, 2003.

[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading (Mass.): Addison-Wesley, 1989.

[21] J. H. Holland, Adaptation in natural and artificial systems : an in-
troductory analysis with applications to biology, control, and artificial
intelligence. Cambridge, MA: MIT Press, 1994.

[22] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin: Springer, 1994.

[23] R. Stahlbock, Evolutiondre Entwicklung kiinstlicher neuronaler Netze
zur Losung betriebswirtschaftlicher Klassifikationsprobleme. Berlin:
WiKu, 2002.

[24] J. Merelo and A. Prieto, “G-LVQ, a combination of genetic algorithms
and LVQ,” in Artificial Neural Nets and Genetic Algorithms — Proc. of
the Int. Conf. 1995 (Alés, France), D. W. Pearson, N. C. Steele, and
R. F. Albrecht, Eds. Wien: Springer, 1995, pp. 92-95.

[25] U. Derigs and G. Schirp, “Genetische Modellierung von Kiinstlichen
Neuronalen Netzen : Erfahrungen beim Einsatz zur Kreditwiirdigkeits-
priifung,” OR Spektrum, no. 19, pp. 285-293, 1997.

[26] S. F. Crone, “Training Artificial Neural Networks using Asymmetric
Cost Functions,” in Proc. 9th Int. Conf. on Neural Information Pro-
cessing (ICONIP’02) — Computational Intelligence for the E-Age, Nov
18-22, 2002, Singapore, L. Wang, C. Rajapakse, K. Fukushima, S.-Y.
Lee, and X. Yao, Eds., vol. 5. Piscataway, NJ: IEEE Service Center,
2002, pp. 2374-2380.

1504

